CMOS image sensor reaching 0.34 e-_{RMS} read noise by inversion-accumulation cycling

IISW, 8-11 June 2015, Vaals Qiang Yao, <u>Bart Dierickx</u>, Benoit Dupont, Gerlinde Ruttens Caeleste, Mechelen, Belgium <u>www.caeleste.be</u>

Abstract

This work presents the design and evaluation of a 0.18 µm technology 16*16 pixels prototype CMOS image sensor reaching a read noise below 0.34 e⁻_{RMS}.

This result is obtained by the combination of severe oversampling and the reduction of 1/f noise by inversion-accumulation cycling.

The principle Measurement&interpretation How far is photon counting Take home message

The principle

low noise by inversion-accumulation cycling

Caeleste Fermi statistics of interface states

The principle Measurement&interpretation How far is photon counting Take home message

Measurement

&interpretation

Pixel and readout circuit Caeleste

Actual pixel output on oscilloscope

ZPS2 nominal operation Caeleste conditions and key features

Technology	180nm CMOS, 3.3V option		Operation Temperature	-40→+27°C
Pixels	16x16		Sample Frequency	50kHz
Pitch	25µm		Illumination Condition	Dark
Pixel type	4T CTIA with pMOSFET		Accumulation time	16
Interface	Direct Analog		CDS	Digital
N-well amplitude	Between 0V and 3.3V		#Oversamples or #Cycles	1→1600
CVF _{@output}	402→392 µV/e- (-40→+27°C) +/-3%~+/-1%		Acquisition System	Caeleste in-house

Read noise vs #cycles or Caeleste #samples at different temperature

Read noise (cycling) Caeleste vs. temperature

The principle Measurement&interpretation How far is photon counting Take home message

How far is photon counting

Excercise of thought

The limit of "PhotonCaelesteCounting" accuracy

The Gaussian distribution Caeleste of 0.25 noise electrons

caeleste The limit of "Photon Counting" accuracy

20150611

The principle Measurement&interpretation How far is photon counting Take home message

Take home Message conclusions

Take home Caeleste

Expected:

- \Rightarrow Clear effect of the inversion-accumulation cycling
- \Rightarrow Number of oversamples is limited by DCSN.

Not expected:

- \Rightarrow Improvements factor is finite
- \Rightarrow McWorther model for 1/f noise may be incomplete.

Further improvements?

- \Rightarrow A higher number of cycles
- \Rightarrow Lower temperature

 \Rightarrow Thinner oxide MOSFETs.

Thank you!

20150611