

Multi-bit Quanta Image Sensors

Eric R. Fossum International Image Sensor Workshop (IISW) Vaals, Netherlands June 10, 2015

Quanta Image Sensor "Count Every Photoelectron"

Single-Bit QIS

Jot = specialized SDL pixel, sensitive to a single photoelectron with binary output, "0" for no photoelectron, "1" for at least one photoelectron.

Many jots are needed to create a single image pixel.

e.g. 16x16x16 = 4,096

A QIS might have 1G jots, read out at 1000 fields/sec or 0.5 Tbits/sec

ΤΗΑΥΕΡ

HN

AT DARTMOUTH

EN(

Film-like Exposure Characteristic for Single-Bit QIS

QIS D - log H

SCHOOL OF

EERING

Bit Density vs. Exposure

Film Density vs. Exposure 1890 Hurter and Driffield

Figure of Merit: Flux Capacity ϕ_w

At the flux capacity, there is an average of one photoelectron per jot

 $\phi_w = j f_r / \sigma \bar{\gamma}$

 $j = jot \ density \ (per \ cm^2)$ $f_r = field \ readout \ rate \ (per \ sec)$ $\sigma = shutter \ duty \ cycle$ $\bar{\gamma} = average \ quantum \ efficiency$

• At 500nm jot pitch, 1000fps, 100% duty cycle and 35% QE, $\phi_w \cong 10^{12}/cm^2 s$

• Corresponds to ~100lux (555nm, F/2.8, RT=80%)

Drives high jot density and field readout rate so can handle normal lighting conditions

 \rightarrow And improve SNR per sq. cm of sensor area.

Multi-bit Jot Increases Flux Capacity

At the flux capacity, there is an average of $2^n - 1$ photoelectrons per *n*-bit jot

 $\phi_{wn} = jf_r(2^n - 1)/\sigma\bar{\gamma}$

Single bit jot 0, 1 electrons Multi-bit (2b) jot 0, 1, 2, 3 electrons

Can increase flux capacity at same jot density and field readout rate
Or, relax field readout rate and/or jot density for same flux capacity

Little impact on detector and storage well. Little impact on FD CG or voltage swing (e.g. 1mV/e -> 31mV swing for 5b jot.

Flux Capacity Comparison

	QIS 1b	QIS 3b	CIS	SPAD
Pitch	0.5 um	0.5 um	1.1 um	8 um
Full Well	1 e-	7 e-	5,000 e-	1 e-
Readout	1,000 fps	1,000 fps	60 fps	4,000 fps*
QE	35%	35%	35%	35%x30%FF
Flux Cap.	1x10 ¹² /cm ² /s	7x10 ¹² /cm ² /s	7x10 ¹³ /cm ² /s	6x10 ¹⁰ /cm ² /s
Exp. Latitude	5x	2x	1x	5x
Adj. Flux Cap.	5x10 ¹² /cm ² /s	1.5x10 ¹³ /cm ² /s	7x10 ¹³ /cm ² /s	3x10 ¹¹ /cm ² /s
	Concept	Concept	Commercial	R&D demo
	QIS has issue w photography	vith flash	*16,0 dem	000 fps in 320x240 onstrated by STM

© E.R. Fossum 2015

Pump-gate Jot Device with Distal FD and Tapered RG

J.J. Ma and E.R. Fossum, A Pump-Gate Jot Device with High Conversion Gain for Quanta Image Sensors, IEEE J. Electron Devices Society, Vol. 3(2), pp. 73-77, March 2015.

© E.R. Fossum 2015

Need an *n*-bit ADC to discriminate between levels

Ideally, 1 LSB corresponds to 1 photoelectron.

Example: 3b quantizer thresholds

MINI-PAPER IN A PAPER

Recent Results: Jiaju Ma and E.R. Fossum

First Photoelectron Counting without Avalanche Gain

Jiaju Ma and ER Fossum, 6-June-2015 unpublished.

CG=242 uV/e-

-10-

27.4DN/e- using external ADC

© E.R. Fossum 2015

Photoelectron Counting Histogram (PCH) Model

This fit is quite good with mean of 8.2, std. of 2.86 e-, read noise of 0.32 e- rms.

ENGINEERING

Photoelectron Counting Histogram (PCH) Model

Jiaju Ma and ER Fossum, 6-June-2015 unpublished.

CG=242 uV/e-

Pump Gate Jot with Tapered Reset Gate*

56DN/e- external ADC CG=403 uV/e-

Jiaju Ma and ER Fossum, 7-June-2015 unpublished. *Tapered reset suggested by Mike Guidash -13-

© E.R. Fossum 2015

ТНАҮ

ΗÌ

ΕR

Pump Gate Jot with Tapered Reset Gate

ΟF

([']_T

SCHOOL

H H DARTMOUTH

Pump Gate Jot with Tapered Reset Gate

Jiaju Ma and ER Fossum, 7-June-2015 unpublished.

CG=403 uV/e-

Read Noise of 0.46 e- rms (Tohoku Univ paper 5.10)

OF

ΤH

SCHOOL

RTMO

A

Quick Estimate of Read Noise Using Valley-Peak Ratio (VPR)

Late News Summary

	PG jot	Tapered PG jot
Pitch Size	1.4µm	1.4 μm
PTC CG	241.7 μV/e-	403.0 μV/e-
Dark Read Noise	96.89 μV rms	136.9 µV rms
	(0.40e- rms)	(0.34e- rms)
Jot SF Read Noise	96.06 μV rms	136.3 µV rms
PCH CG	255.8 μV/e-	426.2 μV/e-
VPR Read Noise	0.32e- rms	0.28e- rms
Full Well Capacity	288e-	210e-
RT Dark Current	<10e-/s	<10e-/s
Col. Bias Current	416nA	416nA

End of Mini-Paper

Multi-bit QIS ADC Trade Space

Block diagram of readout signal chain.

Power dissipation of single-bit and multibit QIS ADCs operating at different resolutions, and at different speeds for constant flux capacity. (From simulation of a chip in fab, S.Masoodian, D. Starkey, A. Rao, S. Chen, K. Odame and E.R. Fossum)

Signal and Noise for Multi-bit QIS

Log signal and noise as a function of log exposure for multi-bit QIS jots with varying bit depth. The signal is the sum over 4096 jots (e.g. 16x16x16). Saturation signal is $4096(2^n - 1)$.

Signal Non-Linearity for Multi-bit QIS

Non-linearity and saturation characteristics of single-bit and multibit QIS for $1 \le n \le 6$ bits. For the QIS, the capacity of the full well is given by FW=2ⁿ-1. The relative exposure is the quanta exposure H (in photoelectrons) divided by the full well, and the percent saturation is calculated from the expected number of photoelectrons in the photosite. Generally for the QIS, a "cubicle" in x,y, and t might be summed.

Signal Non-Linearity for Multi-bit QIS

-23-

HDR mode for Multi-bit QIS

Comparison of an HDR mode for 1b and 2b QIS. Cubicle is 16x16x16 fields, with 4 different shutter duty cycles. First 4 fields duty cycle is unity, next is 1/5, next is 1/25, and last group of 4 fields is 1/125. Signal is sum of cubicle data

Alternate HDR mode for Multi-bit QIS

Alternate HDR mode that improves low-light sensitivity at expense of reduced SNRH at higher light levels. Note 10% of max signal change occurs over last 40 dB of DR. First 13 fields duty cycle is unity, next field duty cycle is 1/5, next field is 1/25, and last is 1/125. The contribution of each set of fields is also shown.

-25-

Gain Variation

- To have count error < 1 e-, want gain variation $\delta G/G \leq 1/(2^n 1)$. Example, for n = 4 we want $\delta G/G \lesssim 6.6\%$
- For low BER, better to have $\delta G/G \leq 1/2^{n+3}$. For n = 4 that is 1/128 = 0.8%

-26-

Summary

- QIS goal: "<u>count every photoelectron</u>" in the sensor.
- "Flux capacity" as a figure of merit.
- Non-linearity is a function of bit depth *n*.
- Bit depth can be changed (downwards) during or after capture, and thus change linearity.
- First photoelectron counting without avalanche gain demonstrated.

Discussion Points

- Techniques and concepts such as high CG and digital integration will be applicable to many sensors.
- Concepts apply to larger jot/pixel sizes and slower readout speeds. It is CIS or QIS?
- How important is it, really, to discriminate accurately between 14 and 15 electrons?
- Combination with cascaded integration (or LOFIC) will be interesting.
- IoT will be light starved.

EXTRA SLIDES

ENGINEERING Tapered Reset Gate Geometry

STI edge taper To reduce RG overlap capacitance

Top view Synopsys Sentaurus SPROCESS output

Pump-gate Jot Device with Distal FD and 4-Way Shared Readout

With distal FD, shared readout does not increase FD capacitance due to multiple TG overlaps

Pump-Gate Jot With Distal FD Status

- BSI CIS as baseline process.
- Test subarrays (32x32 each)
- No extra masks required
- Masks and Implants changed

	Non-Shared	4-Way Shared
Technology	65 nm BSI CIS	65 nm BSI CIS
Pitch	1.4 um	1.0 um
Full well	200 e-	200 e-
Baseline CG		170 uV/e- (1.4um)
Non-taper CG	250 uV/e-	250 uV/e-
Tapered RG + smaller SF CG	480 uV/e-	n/a
Future pitch @65nm?	1.2 um	0.8 um

Η

EN

Т

-33-

Ϋ́

Histograms of Photoelectrons

OF

G

OOL

FRIN

HÌ.

DARTMOUTH

© E.R. Fossum 2015

Bit Density Bit Density $D \triangleq \frac{M_1}{M} = 1 - e^{-H}$

© E.R. Fossum 2015

-35-

Multi-Arrival Threshold (Not QIS)

Binary output of sensor ="1" when # of arrivals $k \ge k_T$ Results in reduced higher slope and less overexposure latitude

