Bit-plane Processing Techniques for Low-Light, High Speed Imaging with a SPAD-based QIS

Istvan Gyongy, Neale A.W. Dutton, Luca Parmesan, Amy Davies, Rebecca Saleeb, Rory Duncan, Colin Rickman, Paul Dalgarno, Robert K. Henderson

THE UNIVERSITY of EDINBURGH

Introduction

We consider image processing schemes for:

- -High speed imaging
- -Low light microscopy

The SPCImager

Digital mode of SPCImager

SPCImager is an implementation of the Quanta Image Sensor, i.e. a single photon oversampled binary camera

Fossum (2005) "Gigapixel Digital Film Sensor (DFS) Proposal"

Data Acquisition

An FPGA board is used to control the capture of bit-planes and stream them to the PC over **USB 3.0.**

Example – Rotating fan

Sequence of raw bit-planes at 10kfps

(Playback at 500× slower rate)

2µs exposure, 100µs acquisition time/frame

THE UNIVERSITY of EDINBURGH

Example – Rotating fan (II.)

Sum of 32 bit-planes

Fixed sum

Rolling sum

64µs exposure, 3.2ms acquisition time/frame

Example – Rotating fan (III.)

Sum of 128 bit-planes

Fixed sum

Rolling sum

256µs exposure, 12.8ms acquisition time/frame

THE UNIVERSITY of EDINBURGH

Example – Rotating fan (IV.)

Sum of 32/128 bit-planes

Adaptive rolling sum Rolling sum High var. pixels

Example – Blinking molecules 10

Fluorescent markers (ATTO 655) used in Super-resolution Microscopy

Example – Blinking molecules (II.) 11

- Photon detections from molecule
- Noise/background

Quanta Image Sensor

Example – Blinking molecules (III.) 12

Example – Blinking molecules (IV.) 13

Sum of 3×3 pixel region over 1000 bit-planes

Conclusions

We considered two applications of a SPAD QIS:

High speed imaging

Low light microscopy

We explored the potential advantages of different bit-plane aggregation schemes.

The schemes are highly parallelisable (for an FPGA implementation) and have many possible extensions.

Acknowledgements

This research was funded by the ERC TotalPhoton grant.

The authors appreciate the support of STMicroelectronics who fabricated the device.

The use of the ESRIC facilities at Heriot-Watt University is also gratefully acknowledged.

European Research Council

Edinburgh Super-Resolution Imaging Consortium

