Outline

- CMOS SPAD – motivation
- Two ended vs. Single Ended SPAD (bulk isolated)
- P+/N two ended SPAD and its optimization
- Application of P+/N two ended SPAD
- NIR enhanced N+/P SPAD scheme
- QE optimization device and optics
- SiPM and its density optimization
- Source Follower as an amplifier
Single Photon Detection

- OOPs – the wrong presentation, this is 4T pinned photo diode pixel – 1e noise, very high sensitivity
- So, why SPAD – People say, it’s all about timing …

Images at starry night – 0.6 mili-Lux!!!!

(10 micron pixels)

5 meters

10 meters

15 meters
Stand alone SPAD can be well optimized
- using minimal mask count
- any desirable operating voltage
- High performance

SPAD embedded in CMOS/CIS process
- Somewhat inferior for the features above,
 However:
- Allows monolithic on chip quenching, readout, and other circuitry
- Enable CIS optimized pixel on same chip with SPADs
Can one add low voltage circuitry in series to the SPAD?

- Single Ended SPAD can have better NIR response but it’s harder to use fancy quenching
- “Two Ended” SPAD

Problems:
- Single Ended SPAD can have better NIR response but it’s harder to use fancy quenching
P+/N “Two Ended” SPAD optimization

Schematic cross section of the SPAD

Simulated Doping Concentration on a vertical cut line
TCAD Process Simulation Results-

Simulated half SPAD structure (Doping Concentration)

- Avoiding Early Edge Breakdown by Virtual Guard ring

Simulated SPAD IV curve

- BV~19V
- BV~13.9
- BV~12V

Avoiding Early Edge Breakdown by Virtual Guard ring
Electrical Fields and Impact Ionization Rate

Simulated electrical fields at -14V on the Anode (process A)

Simulated Impact Ionization rate at -14V on the Anode (process A)

Simulated electrical fields on the vertical cut line (A, -24V, B, -18V, C, -14V on the Anode)

Simulated Impact Ionization rate on the vertical cut line (A, -24V, B, -18V, C, -14V on the Anode)
DCR vs. Excess Bias (room temperature)

- DCR is exponential in excess voltage
- Inversely depends on breakdown voltage

Measured DCR density vs. Excess bias at room temperature

<table>
<thead>
<tr>
<th>Process split</th>
<th>BV [V]</th>
<th>DCR Density [Hz/um²], RT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-12.41</td>
<td>21</td>
</tr>
<tr>
<td>B</td>
<td>-14.54</td>
<td>4.6</td>
</tr>
<tr>
<td>C</td>
<td>-20.13</td>
<td>1.5</td>
</tr>
</tbody>
</table>

At 3.3V excess bias:
Photon Detection Efficiency Spectrum and Excess Bias dependency

- PDE linearly dependant on excess voltage
- Low PDE for NIR

Measured PDE vs. Excess bias (passive quenching circuit)

<table>
<thead>
<tr>
<th>Process split</th>
<th>BV [V]</th>
<th>PDE [%] Blue 470nm</th>
<th>PDE [%] Green 530nm</th>
<th>PDE [%] Red 660nm</th>
<th>PDE [%] NIR 880nm</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-12.41</td>
<td>20.93</td>
<td>15.93</td>
<td>7.3</td>
<td>2.03</td>
</tr>
<tr>
<td>B</td>
<td>-14.54</td>
<td>16.13</td>
<td>12.69</td>
<td>6.63</td>
<td>1.55</td>
</tr>
<tr>
<td>C</td>
<td>-20.13</td>
<td>12.07</td>
<td>9.09</td>
<td>6.91</td>
<td>1.33</td>
</tr>
</tbody>
</table>
P+/N SPAD Application – Gunshot Detection

Application works in visible light

2nd Generation can be monolithic since TowerJazz can join CIS pinned photodiode and SPAD within the same process

System Description

1) Commercial high resolution CMOS imager for the spatial SPAD synchronization
2) FPGA commercial carrier board used for operating the SPAD image sensor and signal processing of its output data
3) A CMOS SPAD image sensor placed on a mezzanine board
4) Specially-designed opto-mechanical system for the SPAD image sensor.
5) Narrow-band optical filter

Muzzle flash emits photons at $\lambda=766$[nm]
Device and Pixel Architecture

- SPAD pixel Layout
- 64x64 SPAD Imager Layout
- SPAD pixel Block Diagram
N+/P Single Ended SPAD

- Implemented on 5.5µm epi – 30Ωcm
- Note bulk to epi doping gradient
TCAD Process Simulations Results -

- Low fields on diode edge – avoiding edge breakdown

Simulated half SPAD structure (Doping Concentration)

Simulated electrical fields at 21V on the Cathode
Electrical Fields (magnitude) - simulated -

- Electrical field is small out of multiplication region
- Good agreement of IV curve between simulations and measurements

Simulated electrical fields and potential on the vertical cut line (21V on the Cathode)

Simulated and Measured SPAD IV curve
- PDE at 905nm 3.2% averaged on cell pitch
- Low DCR
- Acceptable DCR even for 100C!

Meas. by Niclass 2015
- DCR is weakly dependant on excess voltage
- Jitter is small and suitable to automotive demands

Measured mean DCR density vs. Excess Bias, room temperature

timing response @ 5V Excess Bias to a 635nm laser diode emitting 100 psec overall timing jitter of ~160 psec FWHM.
SPAD with depleted low doped region

- Reach-Through SPAD
- Quit old concept
- From: Opto-Electr Rev. 5 no. 2 1997

Cross Section

Field Profile

Doping Profile
Fully depleted 9µm High Res SPAD Simulations

- Similar SPAD structure – starting material and implants change
- Breakdown - simulated 36V measured 38V
- Significant field deep in the epi -
- Average QE at 905nm enhanced from 3.2% to 4.6%

![Simulated Potential vs. depth](image1)

![Simulated Field vs. depth](image2)

![Edge Optimization](image3)
SiPM – Silicon Photo Multiplier

- Array of SPADs
- Hard wired or capacitively coupled SPADS
- Benefits:
 - Timing + number of photons
- Cons
 - Slower rise time
 - Sensitive to “screaming” SPADs
 - More prone to X-talk
Optimization of Layout Of an SiPM

- Guard Ring is minimized
- Rounded corners instead of circles
- High Resistivity poly resistors 10kΩ/
- Fine optimization of cell size
 - Fill Factor
 - Microlenses
 - Capacitance
- No evidence for screaming SPADs nor for cross talk
Elevated Microlenses Optics

- SPAD suffers from low fill factor
- SPAD diodes pitch is relatively large – hard to make effective microlenses
- For long focal length lenses should be put high above the B/E
- Tower developed large elevated microlenses
- With elevated microlenses we expect effective QE of about 7%
- Targeting effective QE of 10% at 905nm after further device optimization

Normalized PDE mapping of SPAD area, Niclass 2014

Elevated “Big” Microlenses
Dead time and Active Quenching

- SPAD capacitance is between 10fF-30fF depends on layout
- RC time with 250kΩ resistor is below 10ns, which is probably good enough for Automotive applications
- We are working on “tricky” quenching circuits that can improve by shortening and better defining the dead time
Capacitive Coupled Monostable Recovery Circuit
Summary

- CMOS-SPAD was developed on platform supporting 0.18µm CMOS (1.8V/3.3V or 1.8V/5.0V) and CIS state of the art pixels
- “Single Ended” and “Two Ended” version were developed
- Optimization was mostly focused on effective PDE in the NIR – Layout, Starting Material, Implant Scheme, and pixel optics
- Some special process modules were developed i.e. super high resistor, large microlenses and microlens elevation
References