IISW2013

Fundamental Ion Implantation Technologies for Image Sensor Devices

June, 12–16 2013 SEN corporation Genshu Fuse and Michiro Sugitani

SEN Corporation

IISW2013 @Snowbird, UT

The Implant Company

1

Outline

- 1. Typical CIS structure and Implantation
- 2. Metal contamination
- 3. Implant damage
- 4. Image undulation issue from beam scan
- 5. Deeper implant with Ultra high energy implanter
- 6. Ultra low energy/medium dose implant
- 7. Implant angle accuracy
- 8. Summary

1. Typical CIS structure and Key Implantations [Image about CIS implant issues]

2. Metal contamination

Two kinds of Metal contamination

- 1. Energetic contamination (from ion source)
- 2. Beam knock-on from metal put on surface

SEN Corporation

IISW2013 @Snowbird, UT

Molybdenum ion source arc chamber

Alfedo Cubina 1990 IIT P160

Analyzing Magnet strength Mo⁺ :98 Mo⁺⁺ :49 Same Analyzing **Magnet strength** [BF₂=49]

Just for the record fluorine atoms have heavy chemical sputter strength

Molybdenum arc chamber source should not be used

SEN Corporation *IISW2013 @Snowbird, UT*

Metal contamination : Knock-on effect

Monte Carlo simulation [TRIM]

SEN Corporation

IISW2013 @Snowbird, UT

SEN Corporation IISW2013 @Snowbird, UT

The Implant Company

7

Metal contamination reduction

One example of Countermeasure for Metal Contamination on Medium current implanter

Implant condition As 80keV 2E16 cm⁻²

SEN Corporation

IISW2013 @Snowbird, UT

4. Image undulation issue from beam scan

High energy batch type implanter case

[The effect of Bias Q Lens]

SEN Corporation

IISW2013 @Snowbird, UT

IISW2013 @Snowbird, UT

IISW2013 @Snowbird, UT

IISW2013 @Snowbird, UT

- UHE Beam Energy and Current -

								unit: pµA			
UHE	В			P				As			
	+	2+	3+	+	2+	3+	4+	+	2+	3+	4+
90keV	1000			1000				500			
0.3MeV	500			380				150	75		
~0.5MeV	750	75		450				150	75		
~0.9MeV	750	75		450	300				75	35	
~ 1.3MeV	750	75		450	300				75	35	
~ 1.5MeV	750	75	1		300				75	35	
~2.0MeV	750	75	1		350	50				35	
~2.5MeV		75	1		350	50				35	
~ 3.1MeV		75	1		350	50	1			35	5
~ 3.4MeV		75	1		350	50	1			35	5
~3.6MeV		75	1		350	50	1			35	5
~4.4MeV			1		350	50	1			35	5
~4.6MeV			1			50	1			35	5
- 5.0MeV			(1)		50	1				5
~ 6.3MeV						50	1				5
~ 8.0MeV							1				5

Available energy by UHE

SEN Corporation

IISW2013 @Snowbird, UT

IISW2013 @Snowbird, UT

8. Summery

- **1.** Metal reduction has been continued
- 2. **RF shower** is effective to reduction metal contamination
- 3. Low level of metal sputtering at MeV implant
- 4. Bias Q (beam modulation) is effective for image sensor to control damage and image undulation
- 5. Batch type implanter has still some merits for image sensor
- 6. UHE implanter can achieve up to 5 MeV boron and 8MeV phosphorous to form deep P and N layer
- The reduced cone angle disk can decrease implant angle error to 0.34° even at batch implanter
- 8. Implant angle accuracies can reach under 0.2° as a practical ability
- 9. Ultra low energy/medium dose implant can be realized to form shallower surface P layer