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ABSTRACT

Pushing the physical limits of the camera sensors brings
significant challenges to image post-processing techniques,
which often have to work under various constraints, such as
low-power, limited memory and computational resources. Other
platforms, e.g., desktop PCs suffer less from these issues,
allowing extra room for improved reconstruction. Moreover, the
captured images are subject to many sources of imperfection
(e.g., noise, blur, saturation) which complicate the processing.
In this paper, we give an overview of some recent work aimed at
overcoming these problems. We focus especially on denoising,
deblurring and demosaicking techniques.

I. INTRODUCTION

In the past decade, there has been a significant increase in
diversity of both display devices and image acquisition devices,
going from tiny cameras in mobile phones to 100 megapixel
(MP) digital cameras. The number of megapixels of digital
camera sensors steadily increases while the sensor elements
become smaller and smaller. Consequently, more sophisticated
image post-processing techniques are required to solve the
problems caused by noise [1]. In general, there is a tendency to
push the physical limits of acquisition, resulting in larger digital
images with more noise (both from the sensors and analog-to-
digital converters in the camera), blur and a large variety of
other artifacts. On the other hand, there is a big diversity in
platforms (mobile devices, tablets, desktop PCs, ...), displays
and cameras. Due to restrictions in computational resources,
limited memory and batteries, a compromising solution consists
of integrating relatively simple post-processing/reconstruction
schemes into the cameras. On other platforms, more computa-
tional resources and more memory may be available, so that
full frame buffers can be processed, potentially giving extra
room for image enhancement and improved reconstruction.
Many cameras, especially the more expensive single-lens-reflex
cameras, allow storing the images in a raw format onto the
camera’s SSD memory card. Then the user can reconstruct
the images on a desktop PC using RawTherapee,1 Adobe(R)
Lightroom(TM) or related software packages.

Another issue is that applying demosaicking and denoising
sequentially often lead to a poor image quality due to incorrect
interpolation of color intensities and noise [1] (and idem
for other artifact corrections). Recently, more sophisticated
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Fig. 1. A unified reconstruction framework.

techniques have been developed that jointly solve several
degradations (e.g., noise, demosaicking, blur, saturation) at
once, using the mathematical framework of estimation theory,
leading to much better reconstruction results. Several notable
examples are: joint denoising and demosaicking [1]–[4], joint
demosaicking and deconvolution [5]–[8], high dynamic range
reconstruction and denoising [9], [10] and declipping and
denoising [11].

In this paper, we will give an overview of some of these
novel developments in Section II. Next, we present a unified
reconstruction framework for dealing with several degradations
simultaneously. In this framework (see Figure 1), the degrada-
tion is naturally modeled in the image domain, while the image
model is defined in a multi-resolution transform domain (e.g.,
wavelets, curvelets, shearlets, ...). In the image model, sparsity
(which states that the image can be represented using a small
number of coefficients with significant magnitude) plays an
important role. This decoupling has the important consequence
that a reconstruction technique can be designed by:

1) Selecting an appropriate multiresolution transform (based
on image content and/or computational resource, power
and memory considerations) and sparsity measure (Sec-
tion III-A).

2) Incorporating a realistic camera noise model (Sec-
tion III-B).

3) Using a “generic” solver to reconstruct the image (Sub-
section III-C).

Despite the generality of this approach, due to the itera-
tive nature of the solver, the algorithms are computationally
intensive and are best suited for the desktop PC platform
(e.g., reconstructing a 10MP may take several seconds using
a GPU). However, for certain combinations of degradations
(such as demosaicking+denoising), several simplifications can
be made, which often lead to non-iterative solutions that could
be implemented in the camera hardware.



II. A BRIEF OVERVIEW OF DENOISING AND
DEMOSAICKING TECHNIQUES

II-A. Image denoising

Well-known image denoising techniques include total varia-
tion [12], bilateral filtering [13] and anisotropic diffusion (e.g.
[14], [15]). Nonlinear diffusion schemes [16] compute solutions
of a set of coupled partial differential equations (PDEs) that
are inspired by heat-diffusion equations. For the restoration
of blurred images with Poisson noise, the Richardson-Lucy
(RL) method has been proposed in [17]. Because RL does not
include regularization, extensions include RL with Tikhonov-
Miller regularization [18] and RL with TV regularization [18].

The NLMeans filter [19] exploits non-local similarity of
image patches (e.g., bricks in a wall). By its success, many
improvements have been proposed (e.g. [20]–[22]). In a related
technique, BM3D [23], similar patches are grouped in a 3D
stack and subsequently denoised in the 3D transform domain,
resulting in very appealing visual results. Very recently, some
methods have emerged that combine NLMeans/BM3D ideas
with dictionary learning.

With the advent of wavelets, wavelet shrinkage has attracted
the interest of many researchers, due to its simplicity and
effectiveness. In wavelet transform decompositions of images
with white noise, high-pass subbands mainly consist of noisy
coefficients with occasionally large magnitudes caused by edges
and textures. Shrinkage techniques reduce the magnitude of the
non-significant coefficients (coefficients with a magnitude that
is smaller than a given threshold) to suppress noise. Several
techniques have then been specifically developed to optimize
the thresholds in terms of a well-chosen criterion [24].

Sophisticated image priors/distributions help to improve
wavelet-based denoising methods: Bayesian estimators exploit
the statistical properties of wavelet coefficients, together with
the good time-frequency localization properties of the wavelets.
Some techniques use univariate priors (e.g., [25], [26]) while
other methods also exploit the local correlations of the wavelet
coefficients (e.g., [27], [28]).

II-B. Joint image demosaicking+denoising

Due to price and power consumption reasons, the use of color
filter arrays (CFAs), such as the Bayer CFA is still very popular.
In [29], a broad overview of image demosaicking techniques
can be found. While in the past, demosaicking and denoising
have mostly been performed sequentially, more recently joint
demosaicking and denoising (sometimes called denoisaicing
[2]) have been developed [1], [2], [4], [30].

Similar to image denoising, wavelet-based demosaicking
has been explored by Hirakawa in [31]. Simple linear demo-
saicking rules can be derived to de-modulate or de-multiplex
the chrominance and luminance information in the wavelet
domain. When a wavelet-transform is available in hardware,
the joint demosaicking and denoising can be performed very
efficiently and at a low computational cost in this transform
domain. The main limitation is a hard assumption for the
chrominance and luminance bandwidths. These assumptions
are often invalid for real-world images, resulting in color and
zipper artifacts. In recent work [32], we have extended the
approach of Hirakawa to the complex wavelet domain and by
integrating local spatial adaptivity in the algorithm. Because of

these innovations, it becomes possible to alleviate the problems
with the bandwidth assumptions. In [3] we have extended this
technique to denoising+demosaicking by integrating a Bayesian
Gaussian Scale Mixture prior.

II-C. Joint image demosaicking+deblurring+denoising

Also, joint demosaicking and deblurring have been studied
by various researchers [5]–[8]. Blur is caused by the camera
capturing a scene that is out-of-focus, or due to the presence
of fast motion (motion blur). Because the human visual sys-
tem is more sensitive to sudden luminance changes than to
color changes, it often suffices to deblur only the luminance
components. For example, in [5], the luminance component is
first estimated and then deblurred. Then, a fast demosaicking
algorithm is used to reconstruct the chrominance components.
Finally, the deblurred luminance component and the blurred
chrominance components are combined. Paliy et al. focus on
removing Poisson noise using LPA-ICI (Local Polynomial Ap-
proximation - Intersections of Confidence Intervals) [6]. Soulez
and Thiébaut developed a Bayesian restoration technique using
edge-preserving spatial and spectral regularization [7].

III. A UNIFIED RECONSTRUCTION FRAMEWORK

III-A. Multiresolution Image Models

Using multiresolution transforms, images can be approxi-
mated by successively adding detail information to a coarse
(low-pass) layer in subsequent refinement steps. This approach
is effective as natural images are often low-pass in nature. The
wavelet transform offers a compromise between spatial and
frequency localization of image features. The classical wavelet
transform, while ideally suited for one-dimensional signals,
turns out to be sub-optimal for representing images, because
the transform can not adapt well to the image geometry. Some
improved multidirectional transforms are steerable pyramids
[33], dual-tree complex wavelets [34], curvelets [35] and
shearlets [36]. Shearlets have the main advantage of allowing
a very fine directional analysis with an arbitrary number of
directions per scale. Furthermore, shearlets are well suited for
representing data defined on a Cartesian grid. In particular,
this opens a number of possibilities to reduce the redundancy,
computation and memory requirements of the transform [37].
We therefore choose shearlets for the results in this paper.

III-B. Noise model

Accurate noise modeling is crucial for good reconstruction
quality. In [10], we have presented a noise model that incor-
porates electronic, photon and fixed pattern noise, and several
post-processing steps in the camera. The main idea is that after
every processing step, the statistical properties of the noise can
be calculated based on the processing function. In particular,
a Taylor approximation with one or two terms can be used to
accurately determine the noise bias and variance. In particular,
we have the measured exposure value xi at position i:

xi ∼ P (Ei∆t) and zi = f(
√
αxi) (1)

where the scene irradiance Ei is integrated over a time ∆t
and where the pixel value zi is obtained by applying the
camera response function (CRF) to

√
αxi, where

√
α is a

gain factor. The CRF models several nonlinear operations in



the digital camera, such as gamma correction, ISO setting,
white balancing, contrast enhancement and quantization, and
is camera/manufacturer dependent. Working with the Poisson
distribution in combination with the nonlinear CRF is not
practical in general, therefore, we use a Poissonian-Gaussian
approximation similar to [38]. The idea is to express the
statistical moments of zi as a function of those of Ei. This
yields [10]:

E [zi|Ei]≈ζ(Ei, 0)+
1

2

∂2ζ

∂ν2

∣∣∣∣
ν=0

and Var [zi|Ei]≈
∂ζ

∂ν

∣∣∣∣2
ν=0

,

(2)
with

ζ(E, ν) = f

(
E∆t+ ν

√
σ2
o + α∆tE + β (∆tE)2

)
(3)

where σ2
o is an offset noise term and where β is the gain fixed

pattern noise parameter. The three parameters σ2
o , α and β

can easily be determined by performing local noise variance
analysis in a setup, in which multiple (at least two) low dynamic
range images with different exposure times are acquired [10].
The result is that for every pixel in the image, the noise variance
of this pixel can be accurately estimated.

III-C. Reconstruction algorithm

Under the Poissonian-Gaussian approximation, a linear
degradation caused by the CFA, blur and additive noise is
given by the following matrix-vector formulation:

~z = ~A~B~y + ~ν (4)

where ~z = [zi, i = 1, ..., n] ∈ Rn (with n the number of pixels
of the sensor), ~y ∈ R3n and ~ν ∈ Rn is a Gaussian noise term,
with statistical moments as in (2). The matrix ~B ∈ Rn×3n

represents the blur operator and ~A ∈ Rn×3n denotes the Bayer
downsampling operator. To solve the ill-posed inverse problem,
the following cost function can be minimized:

~̂y = arg min
~y

λ

2

∥∥∥~C ( ~A~B~y − ~z)∥∥∥2
2

+
∥∥∥( ~D � ~S

)
~y
∥∥∥p
p
, (5)

where λ is a regularization parameter, � denotes the Kro-
necker product, ~C is a diagonal matrix with the reciprocal
of the noise variances 1/Var [zi|Ei] on its diagonal. ~S is
a spatially sparsifying transform (see Subsection III-A) that
operates on each color channel separately. ~D ∈ R3×3 is a
color decorrelation matrix. ‖·‖p =

(∑
i ‖fi‖

p)1/p is the `p-
norm. The cost function (5) can then be minimized using
convex optimization methods, such as split-Bregman [39], split
augmented Lagrangian or primal-dual methods [8]. Finally, tra-
ditional camera corrections (color correction, white balancing,
gamma) are applied to the obtained solution ~y. In principle,
these non-linear corrections can also be incorporated in (4),
but due to the non-convexity of the resulting cost function, this
poses extra challenges, which forms the topic of our current
research.

IV. RESULTS

We evaluate the reconstruction algorithm from Subsection
III-C on a RAW digital camera image, captured with a Nikon
D60 camera with 55-200mm lens at exposure time 1/640s,
aperture f/6.3 and ISO 100. Visual results are given in Figure 2
for the AMaZE algorithm (RawTherapee) and our method. In
our method, denoising, deblurring and demosaicing cooperate
and compensate each other’s deficiencies. This leads to sharp

(a)

(b)

Fig. 2. Reconstruction results (a) RawTherapy - AMaZE demosaicking
(b) Joint demosaicking & deblurring.

images with reduced noise while at the same time demosaicing
color artifacts suppressed.

V. CONCLUSION

Several improvements in reconstruction quality of raw data
from digital cameras are obtained by solving several sub-
problems (e.g., denoising, demosaicking, deblurring, ...) jointly
rather than sequentially. This generic technique is especially
promising because several other linear or even non-linear
effects can be incorporated in the reconstruction model (such
as image sensor deficiencies, high dynamic range, ...). The
study of these extensions is the topic of our currently ongoing
research.
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