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Abstract—In this work, we demonstrate for the first time
a large-area a-IGZO thin-film imager using current-mode
active pixel. It is read out by a custom transimpedance IC,
and has 3122e- noise and 71.4dB dynamic range.

Since its inception, the mainstream backplane
technology for digital radiography is based on a-
Si:H TFTs [Str00]. Transistors are used as switches
in these passive backplanes, limiting speed and noise
performance. Therefore, active pixels using various
semiconductors have been researched to improve both
speed and noise in literature [Kar03, Ted07], but without
industrial traction. The ambition of this work is to
demonstrate an industrially-relevant large-area 256x256
imager, based on an amorphous Indium-Gallium-Zinc
Oxide (a-IGZO) active pixel backplane and a fully
integrated custom readout IC (ROIC).

Figure 1 shows the schematic of the 3T1C active
pixel. To achieve high speeds, we selected the current-
mode implementation [DeR15]. To maximize gain and
minimize the effect of dataline voltage variations, we
selected the common-source topology [DeR16]. The
readout IC was implemented as a transimpedance
amplifier to avoid the integration of large capacitors in
the ROIC [DeR16].

We integrated an organic photodiode (OPD) [Bie18]
on the backplane to verify the behaviour under visible
illumination, as shown in Figure 2. Its external quantum
efficiency (EQE) in back-illumination is around 55%.

Figure 3 shows the behaviour of the pixel amplifier
measured inside the matrix. The matrix is implemented
in L=5µm self-aligned technology with 200nm SiO2
gate dielectric. Due to the high capacitance of the
visible-light photodiode compared to the 300µm thick
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Fig. 1: Schematic of the readout concept. The current-mode common-source active pixel allows for high-speed
readout with maximum gain. The transimpedance digitization stages avoids the integration of large capacitors in
the readout IC.
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Fig. 2: Characteristic of the organic photodiode in dark
and under illumination (3mW/cm2, 523nm)
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Fig. 3: Amplifier characteristics. Operating the transistor
in saturation mode yields much higher transconductance

direct-conversion X-ray materials [Büc15], the charge-
to-current gain is 3.54µA/pC. Figure 4 and 5 show the
sample and the readout setup respectively. We measured
the system with a 160kΩ transimpedance resistor. The
low-pass filter was set at 200kHz. The readout time per
line is 47µs, which is limited by the ADC timing in the
ROIC.

The resulting dark image can be seen in Figure 6a.
The red square defines a region of interest (ROI), with a
limited number of defects. We also rejected the broken
pixels from the ROI. After removing the fixed offset
from the dark image, the noise in the ROI is 101 LSBs.
However, the temporal noise is mainly dominated by a
common component per row. By using a local reference,
e.g. every 1 in 8 pixels, this noise can be reduced to 5.06
LSBs, as shown in Figure 6b.
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Fig. 4: Photograph of the imager sample

Fig. 5: Photograph of the setup with the sample

The sensitivity of the sensor was determined by
illuminating the imager with a green LED. Using optical
power measurements and the EQE of the photodiode,
we estimate the collected electrons. Figure 7 shows the
relationship between collected electrons and the digital
output. The highest sensitivity was 617e-/LSB, so the
noise performance is 3122e-, close to the performance
of the typical passive imagers.

Figure 8 shows an image captured using a
transparency slide. Table I details the measured
specifications of the imager. This is the first full-
matrix thin-film imager with current-mode active pixels,
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Fig. 6: Dark image before and after correction by local reference. The histogram is for the region of interest,
indicated by the red box. The standard deviation before correction is 330, after correction this becomes 5.06.
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Fig. 7: Input-output relationship of the imager for non-defective pixels within the ROI

integrated with a custom readout IC. The imager has a
dynamic range of 71.4dB, and can be read out at 83.1fps.
This design clearly shows the high speed and noise
performance of active imagers in thin-film technologies.
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(a) Without flatfielding (b) With flatfielding

Fig. 8: Image captured with a transparency slide under green light

Frontplane tech OPD [Bie18]
Backplane tech a-IGZO,5µm

Pixel pitch 100µm
Refresh rate 83.1fps
Sensor EQE ≈55%

Conversion gain 617e-/LSB

Noise level
5.06 LSB

3122e-

Amplifier Gain 4.34µS
CtC gain 3.54µA/pC

Full-well cap 11.6Me-

Dynamic range 71.4dB

TABLE I: Specifications
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