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Abstract— Depth precision of direct time-of-flight (dToF) 

sensors is crucial in augmented reality applications, where the ToF 

system should provide a precise depth map under high ambient 

light and low SNR conditions. In this paper, we derive analytical 

expressions for depth precision and worst case depth precision 

considering sub-bin interpolation with a quadratic peak 

interpolation method. The analytical expression for depth 

precision is compared with Monte Carlo simulations and 

measurements from a dToF system. Selection of signal pulse width 

and time-to-digital converter LSB are identified as a means of 

optimizing depth precision. Analytical simulations are used to 

explore this optimization. 

I. INTRODUCTION 

Recently in augmented reality (AR) applications, ToF 

sensors have shown to significantly enhance the overall 

performance by providing high quality 3D depth map of the real 

world [1,2,3]. The value of the ToF sensor in this application is 

to provide a highly accurate and precise depth map at ranges of 

several meters in the presence of high ambient light. With 

system power consumption a key requirement for mobile 

applications, ToF sensors are typically required to detect targets 

at low signal-to-noise ratio (SNR), thus creating a challenging 

environment for precise measurements. 

Figure 1. Generic dToF sensor block diagram. 

A typical dToF system includes a laser source illuminating 

the scene of interest, a highly-sensitive photodetector (APD, 

SPAD) which detects arrival of photons and an accurate 

timestamping circuit, such as a time-to-digital converter (TDC) 

(Figure 1). The depth information is determined by measuring 

the travel time of photons between the emission and detection. 

Typically, multiple measurements are made over several laser 

periods, after which a histogram is reconstructed corresponding 

 
 

to the time of arrival of detected photons. In that, a minimum 

signal-to-noise ratio (SNR) condition needs to be met to detect 

the target peak with a given false detection rate [4]. 

Further, the depth resolution from peak detection is often 

limited to the nearest bin on the histogram, which is likely 

insufficient at short range. This requires that we use sub-bin 

interpolation algorithms to obtain better depth resolution. The 

work in [5] is the most detailed study to date on comparing 

depth precision of sub-bin interpolation algorithms in dToF as 

well as their dependence on environmental and system 

parameters. 

A key feature which can impact the depth precision of a sub-

bin interpolation algorithm is the phase shift of the signal 

centroid with respect to the bins of the TDC where events are 

time-stamped. Since this phase shift results in a given 

distribution of signal counts between the TDC bins, 

characterization of the depth precision in the general case 

requires multiple measurements at finely spaced time-steps 

over the period of a single bin [5]. However, if we wish to know 

the worst case (WC) precision of a system, we require 

measurements with the distance between the system and target 

corresponding to the WC phase shift for the algorithm.  

 In this paper, we derive an expression for the WC depth 

precision, linked to specific phase shifts of the signal, 

considering sub-bin interpolation using a quadratic peak 

interpolation method [6]. The dependence of depth precision on 

the phase shift of the signal within the TDC bin is demonstrated 

by comparing the analytical 1-sigma precision with Monte 

Carlo simulations and then experimental data obtained from a 

dToF system [7]. Finally, optimization of the depth precision 

through appropriate selection of signal pulse width and TDC 

bin width (LSB) is investigated with analytical simulations.  

II. ANALYTICAL MODELING 

Sub-bin interpolation based on quadratic peak interpolation 

[6] was selected due to its relative simplicity. This feature 

makes it suitable for AR applications, where between hundreds 

and thousands of depth points must be computed per frame. The 

expression for the sub-bin centroid of the signal, P, is given by 

 
𝑃 =

1
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where α, β and γ are the peak bin of the signal and its 

neighboring bins as illustrated in Figure 3. The signal shape is 

assumed to be symmetric in our analysis. The 1-sigma depth 

precision, σP, of the sub-bin interpolation can be estimated by 

applying the error propagation formula to Eq. 1. This results in 

the following equation: 

 

𝜎𝑃 = 𝑃√
𝜎𝛼

2 + 𝜎𝛾
2

(𝛼 − 𝛾)2
+

4(𝜎𝛼
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2 + 𝜎𝛾
2)

(2𝛼 − 4𝛽 + 2𝛾)2
 Eq. 2 

where σα, σβ and σγ are the standard deviation of the noise at α, 

β and γ bins, respectively. Due to the absence of readout noise 

in SPAD based systems, these noise contributions are assumed 

entirely composed of shot noise. Although, we could have 

additional sources of error, such as, nonlinearity of the TDC, 

they are assumed to be minimal in comparison to the shot noise. 

We now consider two different cases (Figure 3), at which to 

evaluate Eq. 2. 

 

 
Figure 3. Possible cases for precision analysis. 

 

In case 1, the signal centroid coincides with the center of a 

histogram bin such that 𝛽 is maximized, 𝛼 ≈ 𝛾 and 𝛽 = 𝑁 +

𝑆𝑁𝑅√𝑁 where, for a mean noise count of 𝑁, the SNR is defined 

as (𝑆 − 𝑁)/ √𝑁. In case 2, the signal centroid coincides with 

the boundary between 𝛼 and 𝛽, 𝛼 ≈ 𝛽 and 𝛽 = 𝑁 + 𝑆𝑁𝑅√𝑁. 

The time shift between case 1 and case 2 is ½ LSB and they 

represent the best case (BC) and WC for depth precision, 

respectively. In order to derive the WC depth precision, we 

evaluate the above cases under low SNR and high ambient 

noise. Under these conditions, for case 1, we assume, 𝛼 ≈ 𝛾 ≈

𝑁 and evaluate the 1-sigma expression in Eq. 2 for case 1. 

Given that the noise contributions are assumed driven by shot 

noise, we further assume that 𝜎𝛼
2 =  𝛼, 𝜎𝛽

2 =  𝛽 and, 𝜎𝛾
2 =  𝛾. The 

1-sigma precision for case 1, 𝜎𝑃1, results in the following 

equation: 

 

𝜎𝑃1 = 0.5√
2�̅� + 1
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 Eq. 3 

Please note that we assume 𝛼 ≈ 𝛾 + 1 for the purposes of 

evaluating Eq. 2  as 𝛼 ≈ 𝛾 yields P = 0 which has no physical 

relevance in this analysis. Further, assuming that the second 

term in Eq. 3 is much smaller compared to the first term, it is 

sufficient to include the first term as the only dominant 

contributor to 𝜎𝑃1. 

  For case 2, we assume 𝛾 ≈ 𝑁 and evaluate Eq. 2. The 

resulting equation for 1-sigma precision, 𝜎𝑃2 is as follows: 

 

𝜎𝑃2 = 0.5√
2�̅� + 6𝛽

(�̅� − 𝛽)2
 Eq. 4 

Comparing the first term in Eq. 3 and Eq. 4 shows us that, 

indeed, the worst-case precision occurs for case 2, where the 

signal centroid coincides with the boundary between 𝛼 and 𝛽. 

With this background in mind, we further refine our analysis 

to include additional factors, such as, LSB and laser pulse width 

(FWHM) which influence the achievable depth precision. The 

1-sigma depth precision, σP, can be independently analyzed for 

FWHM and LSB. We define a coefficient, 𝐶1, as the ratio of 𝛼 

and 𝛾  with respect to the peak bin, 𝛽.  For case 1, we can 

assume that for a given pulse width, of a symmetric signal, 𝛼 =
𝛾 = 𝐶1 ∙ 𝛽, where the value of 𝐶1 depends on the signal shape 

(hence, FWHM) and TDC LSB. The 1-sigma depth precision, 

σP1, can be alternatively expressed as follows: 
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 Eq. 5 

 Similarly, for case 2, the 1-sigma depth precision, σP2, can be 

alternatively expressed as follows: 

 

𝜎𝑃2 = 𝑃√
2𝜎𝛼

2 + 4𝜎𝛽
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2
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 Eq. 6 

For Equations 5-6, it is shown that the depth precision can be 

optimized through the tuning of 𝐶1. This will be revisited in the 

results section with examples from simulations. 

III. RESULTS 

In order to demonstrate the effect of phase shift, an analytical 

model including the error propagation formula in Eq. 2 is 

simulated by sweeping the phase of the signal centroid with 

respect to the TDC bin width. The IRF of the SPAD is extracted 

from measured data which is then convolved with a laser signal 

modeled as a trapezoid of a certain FWHM, rise time and fall 

time. The convolved signal is then sampled at the resolution 

(LSB) of the TDC. Based on a given target SNR and mean 

noise, 𝑁,  target peak, β, and neighboring bins, α, γ are 

estimated which are then fed to the analytical expressions in Eq. 

1, 2. The simulation flow also includes a Monte Carlo model 

from which the precision is obtained as a standard deviation of 

the signal centroid over ~5000 runs.  Simulations are performed 

at varying phase shift, TDC LSB, laser FWHM and, SNR.  

Figure 4 shows the 1-sigma depth precision obtained using the 

analytical expression, σP, introduced in Eq. 2 in Section II as 

well as the Monte Carlo simulation results. Analytical results 

obtain good matching with a relative error < 8%. Simulation 

conditions include a laser signal with FWHM at 100ps, a SPAD 

jitter with FWHM at 120ps and a LSB at 218ps. A target SNR 

of ~9 with a mean noise count per bin equal to ~950 is chosen 

to be able to compare the simulation results with the measured 

data obtained under similar conditions (Figure 5a,b). Figure 4 

shows the dependence of precision on the phase shift of the 

signal within the TDC bin, where, a phase shift of ‘0ps’ 

represents the best case (BC) where the signal centroid is 

sampled at the center of the TDC bin (case 1 in Figure 3), and 
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a phase shift of ‘~ ±100ps’ represent the WC where the signal 

centroid is at either extremes of the TDC bin, ±LSB/2 (case 2 

in Figure 3). 
  

 
Figure 4. Depth precision (m) vs. phase shift (ps). 

 

The BC precision of 1.78mm is obtained at phase shift = 0ps. 

The precision starts to degrade as the signal centroid deviates 

from the BC point for increasing phase shifts and reaches the 

WC value at phase shift ≈ ±100ps. The difference between BC 

and WC point is > 3mm under the simulated conditions.  

In order to validate the model, experimental data was 

obtained from the dToF system presented in [7]. Despite having 

a high-quality timing reference on chip including a PLL, 

typically, multiple timing uncertainties exist in the sensor which 

may manifest as offsets or sources of timing jitter. As a result, 

though very small, there is an inevitable residual mismatch 

between the arrival times of clock at various macropixels across 

the sensor array. Although various offsets are typically dealt 

with during calibration, the phase shift of the signal centroid 

across macropixels when imaging a given scene is largely 

unknown. In fact, this is clearly seen in the measured 

histograms obtained in two different macropixels, where, in 

Figure 5a, the signal centroid appears to be favorably sampled 

at the center of the TDC bin (bin 17), while in Figure 5b, 

sampled at the boundary of two neighboring bins (bins 16, 17). 

The histograms also show an underlying relationship between 

the phase shift and the distribution of counts across the bins, 

𝛼, 𝛽, 𝛾 as seen in Section II. We define another coefficient, 2 =
 𝛼/𝛾. For a phase shift of 0ps, C2 is ~1.06 (Figure 5a) and 

increases to C2 ~1.21 for histogram in Figure 5b. In other 

words, as the phase shift sweeps from –LSB/2 to +LSB/2, the 

coefficient, C2, also changes (increases). As a result of this 

relationship, the depth precision can also be plotted as a 

function of C2 = α/γ, thereby, disentangling the absolute phase 

shift which depends on the bin width. Figure 6 replots the 

precision obtained in Figure 4 as a function C2 = α/γ.  Please 

note that obtained curve is not symmetric anymore simply due 

to the difference in representing the data as a function of α/γ 

which linearly increases through –LSB/2 to +LSB/2. The 

precision obtained from the experimental data, is overlaid as a 

scatter plot, where good matching is observed on the overall 

trend in the precision variation. Furthermore, the precision 

obtained is well within the upper limit defined by the WC 

identified in Eq. 4, plotted as a dotted reference line in Figure 

6. Please note that the experimental data presented here is 

uncalibrated for bin width variation across macropixels, which 

is not captured in the simulated data.  

 
(a) 

 
(b) 

Figure 5. (a) Measured histogram when the center of the detected 

pulse sampled at the center of the peak bin and (b) when the center of 

the detected pulse sampled at the boundary of two neighboring bins. 

 
Figure 6. Depth precision (m) vs. coefficient, C2. 



P26 

 

4 

 
Figure 7. Precision (m) vs. SNR for WC and BC points. 

 

In addition to the phase shift of the signal, SNR and FWHM 

of the laser pulse are other factors which can be tuned to 

improve depth precision. The plot shown in Figure 4 is 

simulated over increasing SNR and the BC and WC points are 

extracted. The BC and WC precision values are calculated as 

the minimum and the maximum point respectively, on the 

precision-phase-shift curve for each of the SNR conditions and 

the results are shown in Figure 7. The improvement in precision 

at increasing SNR is evident, although, this plot also 

emphasizes the need to consider the WC points in the depth 

precision while imposing a SNR condition. This can especially 

impact short distances of interest, <500mm, where, a small 

variation can significantly impact the relative depth precision. 

For example, at a minimal SNR of 10, the precision can vary 

anywhere between 1.1% at the WC point to 0.3% at the BC 

point at a target distance of 500mm. 

Figure 8 shows the dependence of precision on the FWHM 

of the laser pulse simulated at different LSB. For FWHM ≤ 

3LSB, the precision inversely scales with bin width. In Figure 

8, this trend is seen for FWHM ≤ 200ps; at FWHM = 200ps and 

LSB = 400ps, where, a majority of the signal energy is 

contained within 1 bin. This is directly related to a lower 

coefficient, 𝐶1, identified in Eq. 6 in Section II, which results 

in a poorer precision compared to LSB = 100ps, where 

FWHM/LSB ≈ 3 and the value of 𝐶1 is higher. Consequently, 

we get a better precision. This trend soon starts to invert for 

scenarios where FWHM/LSB ≥ 3LSB. At these points, the 

signal energy is spread beyond 3 LSBs and the sub-bin 

precision degrades. In Figure 8, at FWHM = 700ps, the WC 

precision occurs when LSB = 100ps, where the signal 

information is likely to be spread across ~7bins, whereas, the 

quadratic peak interpolation captures information only within 

peak bin ± 1 bin, thus, discarding most of the signal counts 

outside this range. Therefore, depending on the FWHM/LSB 

ratio, appropriate peak interpolation algorithm may be 

necessary to fully capture the signal information and ensure 

minimal influence of the processing technique on the precision 

of a measurement. As such, for the results shown in Figure 6 

and in [7], the chosen FWHM ≤ 3LSB to ensure the signal 

information is contained within 3 bins.  

 
Figure 8. Analytical precision (m) vs. FWHM (ps). 

IV. CONCLUSIONS 

Depth precision specifications for ToF systems are typically 

stated with a maximum precision. In the case of the quadratic 

peak interpolation analyzed here, the precision shows a 

dependence on the phase shift between the signal and the TDC 

bins. The model developed here demonstrates good matching 

with Monte Carlo simulations and experimental measurements 

over the phase shift of a single LSB. Further simulations with 

varying SNR show both the tradeoff between SNR and depth 

precision, and the importance of selecting the best or worst case 

phase shifts depending on what is of interest. These results 

demonstrate that the analytical model is a useful tool to 

investigate depth precision over the whole phase shift of the 

TDC LSB. Furthermore, the upper limit, Eq. 4, presents a 

simple method for evaluating the worst case precision at a given 

SNR. Finally, it was shown that should we wish to minimize 

precision, there is a motivation for selecting both a small laser 

FWHM and TDC LSB. 
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