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Abstract—We enhance the lateral resolution of 

direct time-of-flight (dToF) depth images by combining 

multiple frames subject to camera motion.  Experimental 

results, based on synthetic as well as real dToF data, are 

presented to illustrate the effectiveness of the approach. 

I. INTRODUCTION 

Direct time-of-flight (dToF) sensors in image sensor 

format avoid the need for optical scanning, produce 

camera-type intensity data to accompany depth, and 

promise increased robustness to environmental 

conditions such as rain [1]. However, array sizes tend to 

be relatively small due to the large pixels in such 

architectures, leading to low lateral resolutions when 

using flood illumination. Whilst indirect time-of-flight 

sensors offer larger arrays, multi-path interference 

problems can arise and the range is typically lower [2]. 

We here present a method that trades frame rate for 

increased lateral resolution in a dToF device. It is 

inspired by schemes already used for RGB sensors in 

smartphones and cameras, which exploit the user’s 

natural hand shake [3], or a mechanism in the sensor, to 

capture sub-exposures which are spatially shifted with 

respect to one another. These sub-exposures are then re- 

aligned and merged to produce a super-resolution image. 

The idea here is to take this processing a step further, and 

use the sensor motion, as estimated from RGB or 

monochrome intensity data, to re-align and combine 

dToF depth frames for increased resolution in x,y. 

II. SUPER-RESOLUTION ALGORITHM 

To demonstrate the approach, we use an example 

from the Middlebury dataset [4] and run the algorithm 

for different signal-to-background ratios SBR (ratio of 

signal photons to background photons) and different 

levels of random lateral shifts and rotations (representing 

different amounts of camera shake) to increase the lateral 

resolution by a factor of 4. To create the input frames, 

we mimic a SPAD operated in a hybrid imaging 

modality [5] (Fig. 1a), creating synthetic 256×256 

intensity, and 64×64 depth data, in a time-interleaved 

manner. A total of 50 sub-exposures (50 intensity, 50 

depth) are generated. We then estimate the geometric 

transformation between consecutive intensity frames, 

and apply the inverse of this transformation to the depth 

frames (upscaled to 256×256) to align the depth data. 

The second step in the processing (Fig. 1b), considers the 

set of depth values, across all the realigned depth frames, 

corresponding to a given pixel position, and takes a local 

mean within the dominant cluster of values. As a final 

step, a dilation operation is performed to compensate for 

the coarse lateral sampling in depth mode, and sharpen 

the features of the final depth image (Fig. 1c).  

Fig. 2 shows the resulting super-resolved depth 

images for different SBR and shake levels and includes 

the 64×64 input depth map and the 256×256 reference 

depth map. The root mean square error (RMSE) is used 

as a metric to compare the similarity between the ground 

truth and the output depth maps. Low SBR depth maps 

are extremely noisy since most of the ToF peaks are 

buried in the temporal histogram. However, the super-

resolved version shows reduced noise and recovers the 

main features present in the image. At higher SBR, depth 

maps become less noisy, providing a better reconstruction 

of the scene, as indicated by the lower RMSE values. 

When no lateral shifts or rotations are present between 

sub-exposures, the super-resolved image is equivalent to 

a nearest-neighbours interpolation, in other words the 

algorithm becomes ineffective. On the other hand, 

excessive amount of shake moves successive depth 

frames out of the original field-of-view of the scene, 

again leading to an unsatisfactory reconstruction of the 

scene. This is reflected in the RMSE values shown in Fig. 

2: at high SBR the RMSE of the super-resolved image 

being minimised when there is “low to medium” shaking. 

It is of interest to compare the super-resolving 

performance of the algorithm presented here with other 

popular methods. In this paper, we consider nearest-

neighbours interpolation, bicubic interpolation, guided 

filtering [6] (using intensity image as a guide) and our 

algorithm. Fig. 3 shows examples of super-resolved depth 

maps at a medium-low level of shaking and different 

SBR, with close-ups to appreciate details of the 

reconstruction. The RMSE values of our approach are 

generally lower than those of the other algorithms, 

especially when the SBR is low. This in part due to a 

reduction in the effect of noise from background photons, 

resulting from multiple depth frames being combined. 

When the SBR becomes higher, the noise in depth maps 

largely disappears and the observed differences in RMSE 

are reduced. The study thus indicates the benefits of our 

approach, especially when used under strong ambient 

conditions. 

We repeated the above study by using 25 sub-

exposures instead of the original 50. The processing (and 

acquisition) time is halved, and the results show similar 

RMSE for high SBR and a low level of shaking. 

However, the algorithm fails to reconstruct with the same 



      

detail at low SBR and large levels of shaking due to the 

reduced amount of depth data for each super-resolved 

pixel position, leading to inaccurate depth estimates. 

A similar study investigates the performance of the 

algorithm when upscaling by a factor of 8 (from 64×64 

to 512×512) is targeted. As with the previous study, the 

algorithm is able to upscale with a fine level of detail at 

high SBRs and medium levels of shaking. Fig. 4 shows 

a comparison of super-resolved depth maps under a 

“medium-low” level of shaking and different SBRs for 

×4 and ×8 upscaling. When increasing the resolution by 

a factor of 8, the algorithm is seen to reduce the ambient 

noise more efficiently at low SBR values (as indicated 

by lower RMSE), at the expense of four times slower 

processing. 

To demonstrate the approach using real data, we 

consider a 3D-stacked dToF SPAD with in-pixel 

histogramming [7], which has maximum frame rates of 

> 1 kFPS [5]. The sensor is built into a portable prototype 

camera system, featuring an integrated 850nm laser 

source providing flash illumination, and receiver optics 

giving 20º diagonal field of view. 

The results of the processing are depicted in Fig. 5, 

for the case when a sequence of 25 intensity and 25 depth 

frames are captured, each with 5 ms exposure, with the 

camera intentionally shaken in a moderate way. Fig. 5a 

shows the first intensity frame from this sequence, and 

Fig. 5c the subsequent depth frame. The latter is seen to 

be relatively noisy, as a consequence of the high ambient 

level that the data was captured in. Indeed, Fig. 5b, 

showing the underlying histogram for a selected depth 

point, indicates a SBR of less than 0.1. Fig. 5d depicts the 

output of the processing, following depth frame re-

alignment and merging. The level of apparent noise has 

been reduced considerably, and the outlines of the objects 

show improved resolution. Fig. 5e and 5f show point 

clouds, based on the single depth frame, and the super-

resolved depth frame, respectively. Again, the super-

resolved version is seen to result in a cleaner, more 

detailed image.  

The equivalent frame rate of the super-resolved depth 

frame is 4 FPS, which can be increased by reducing the 

number of frames re-aligned or the exposure time in each 

frame. 

III. CONCLUSIONS 

This paper presents an approach which trades frame 

rate for increased lateral resolution, providing evidence 

of its effectiveness compared with other popular 

upscaling techniques, especially at low SBR conditions. 

One of the advantages of the approach, compared with 

the conventional technique of intensity-guided 

upscaling, is that the intensity data is only used for 

motion estimation here, so could potentially be replaced 

by data from inertial sensors (or the motion estimated 

from the depth data itself). 
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Figure 1. Depth super-resolution: a) intensity and depth data is captured in alternating frames; the similarity transformation between 

intensity frames is estimated, and used to re-align depth frames. b) the mean of the depth frames is computed, ignoring outlier points. c) 

reconstructed depth before and after dilation compared to the reference and input depth maps



      

 
Figure 2. Results of processing for different SBR and shake levels: a) reference 256�256 depth map b) example histogram, first input depth map 

(64�64) and final reconstructed depth maps (256�256). All depth maps are normalised to values between 0-1. A randomised geometric 

transformation is applied to each input frame, with respect to the previous frame, in terms of a rotation of magnitude×rand degrees, and translations in 

x and y by magnitude×rand pixels (on the upscaled grid), where rand is a random number between -1 and 1 and magnitude =  0 , 0.05, 0.1 0.25, 0.5 

and 2, for “no shaking”, “very low shaking”, “low shaking”, “medium-low shaking”, “medium shaking”, and “strong shaking”, respectively.   
 

 
Figure 3. Super-resolution processing for different SBR and medium-low shaking: a) reference 256�256 depth map b) input depth map 

(64�64) and reconstructed depth maps (256�256) including close-up (on area indicated by white rectangle) for nearest neighbours, bicubic 

interpolation, guided filtering and our approach. All depth maps are normalised to values between 0-1. 



      

 
Figure 4. Super-resolution processing for different SBR and medium-low shaking for �4 and �8 increase in lateral resolution. All depth 

maps are normalised to values between 0-1. 

 

 

 

 
Figure 5. Results of processing for the garden scene: a) single intensity image b) example photon timing histogram, corresponding to nose 

of gnome. c) single depth frame, obtained by centroiding the raw histogram frame from the sensor d) processed depth frame e) point cloud 

for depth frame in c with intensity overlaid f) point cloud for depth frame in d with intensity overlaid. 

The sensor was operated in flash mode and configured with 4ns bin width, leading to ~10m of unambiguous depth range. A 850nm laser 

producing 2W, 10ns pulses at 6MHz was used, with a 10nm bandwidth filter being placed in front of the sensor. 


