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Abstract—In this paper we analyze the effectiveness of
four oversampled techniques on the read noise performance
of CMOS image sensors. We compare correlated multi-
ple sampling (CMS), noise optimized correlated multiple
sampling (NOCMS), skipper multiple sampling (SMS) and
noise optimized skipper multiple sampling (NOSMS) using
model parameters from two sensors. We verify the presented
model against CMS measurements. We point out that floating
diffusion (FD) leakage current becomes a dominant noise
factor in CMS, which NOCMS can greatly reduce. Finally,
we conclude that SMS and NOSMS have more potential to
further reduce read noise than CMS or NOCMS.

I. INTRODUCTION

Read noise is a fundamental limitation for image sensors
under low light conditions. CMS has gained increasing
popularity for read noise reduction [1]–[3]. Research for
uncooled and fast noise reduction is ongoing. In this
paper we will investigate noise reduction techniques based
on oversampling to determine which one offers the best
opportunity to achieve electron counting operation.

+ AV=1

N(t)

P(t)
QR-QS

QR

Z(t)

ФR

ФS

Figure 1. Model block diagram

Fig. 1 shows a simplified linearized block diagram of
a CIS readout from the pixel to the column level ADC.
Here, Z(t) denotes the ADC sample, QR, QS are the input
referred reset and signal charges, ΦR, ΦS are the signals
determining if a reset or signal sample is measured, N(t)
and P (t) are random processes modeling read noise and
FD leakage and AV is the conversion gain.

The first oversampling technique is CMS as described
in [1]–[3]. Part a) of Fig. 2 illustrates its voltage level
waveform at the input of the column level ADC. The
circles represent the ADC sample points. The second
technique is a variant of CMS - NOCMS, where the
difference samples Xi (cf. Eq. 4) are arranged in a specific
order and weighted before summation Y =

∑N
i=1 αi ·Xi

based on the noise statistics of the data [4]–[7]. This is
illustrated in part b) of Fig. 2. Note that in the case where
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Figure 2. Oversampling waveforms - Note that Xi describes the
difference of reset and signal sample. The figure illustrates the pairings
of said reset and signal samples.

all weights αi = 1/N both methods are equal from a
stochastic point of view. For this reason we will focus on
the pairing depicted in b) for the remainder of the article.

Both of these techniques assume a standard floating
diffusion amplifier at the pixel. The next two techniques
assume that charge can be moved at the pixel level, for
example in a floating gate amplifier or skipper amplifier
[8], [9], to enable a sequence of non-destructive reset and
signal measurements over and over again as shown in part
c) of Fig. 2. These two read out techniques are SMS [9]
and NOSMS [10]. The only difference between the two
techniques is that NOSMS uses a weighted sum based on
the noise statistics of the data just like NOCMS.

In Section II we describe our simplified time domain
readout model and derive the read noise for oversampled
systems. In Section III optimal weights for NOCMS and
NOSMS are derived. In Section IV we present how we
derive noise models based on measurements of two sensors
and in Section V we present noise power as a function of
oversampling ratio for the four techniques based on white
noise and the models presented in Section IV. Finally in
Section VI we present summary conclusions.



II. OVERSAMPLING THEORY

Earlier publications showed empirically that, e.g.
X1, X2 should be stronger weighted than XN−1, XN due
to potentially higher correlation of signal and reset sample
[4], [5], [10]. Only recently [6], [7] presented mathe-
matical attempts towards a noise optimization. However,
this approach used expensive pixel-level optimization.
We present a model that allows a more cost efficient
implementation.

For further derivations sampling conditions are defined:

Z(t) = AV ·

{
N(t)− P (t) + QR for t ∈ TR

N(t)− P (t) + QR −QS for t ∈ TS
(1)

TS =


{tS−i = T + (N + i− 1) ·∆t

|i = {1, . . . , N}} for CMS, NOCMS

{tS−i = T + (2i− 1) ·∆t

|i = {1, . . . , N}} for SMS, NOSMS

(2)

TR =


{tR−i = T + (N − i) ·∆t

|i = {1, . . . , N}} for CMS, NOCMS

{tR−i = T + (2i− 2) ·∆t

|i = {1, . . . , N}} for SMS, NOSMS

(3)

Xi = A−1V · [Z(tR−i)− Z(tS−i)] , tS−i ∈ TS, tR−i ∈ TR

= QS + P (tS−i)− P (tR−i) + N(tR−i)−N(tS−i)

(4)

where TR and TS are the sets of all reset and signal time-
points and Xi correspond to the difference samples. Using
Eq. 2 to Eq. 4 it directly follows that

E[Xi|pm,n] = QS +
Id
q
·∆t ·

{
2i− 1 for CMS, NOCMS
1 for SMS, NOSMS

(5)

where E[·|pm,n] denotes conditional expectation of a pixel
at location m,n. This results in a dark current related
bias b|pm,n in Y =

∑N
i=1 αi ·Xi which for NOCMS also

depends on the choice of weights α. Forcing
∑N
i=1 αi = 1

and subtracting the average bias E[b] from Y yields a bias-
free estimator Ỹ of QS :

Ỹ =

(
N∑
i=1

αiXi

)
− E[b] (6)

b|pm,n =



(
Id
q

)
·∆t ·N for CMS(

Id
q

)
·∆t · [

∑N
i=1 αi · (2i− 1)]

for NOCMS(
Id
q

)
·∆t for SMS, NOSMS

(7)

E[Ỹ |pm,n] = QS + b|pm,n − E[b] (8)

E[Ỹ ] = E[E(Ỹ |pm,n)]

= QS − E[b] + E[b|pm,n ]︸ ︷︷ ︸
=E[b]

= QS (9)

with E[·] as the total expectation.

The error between Ỹ and the true value QS can be
measured quadratically:

E[(Ỹ −QS)2] = σ2
Ỹ

= σ2
Y

=

 N∑
i=1

N∑
j=1

αi · αj ·RX−Q(i, j)

−( N∑
i=1

αi · E[Xi]

)2

(10)

where σ2
Y and σ2

Ỹ
are the total variances of Y and Ỹ ,

and RX−Q(i, j) = E[E[Xi · Xj |pm,n]] is the expected
autocorrelation function across all pixels. Section IV ad-
dresses how we model and estimate RX−Q and E[Id]
which explains E[Xi] = E[E[Xi|pm,n]] through Eq. 5.

III. NOISE OPTIMIZATION OF CMS AND SMS

Using Eq. 4 one can derive the relation between the
QS-dependent RX−Q and a signal-free RX :

RX−Q(i, j) = E[X(i) ·X(j)]

= 2 ·QS · (QS + E[b]) +RX(i, j). (11)

With that follows that the goal function Eq. 10 yields
optimal weights α∗ that are not dependent on QS :

σ2
Ỹ

= E[Y 2]− (E[b] +QS)2

=

N∑
i=1

N∑
j=1

αi · αj ·RX−Q(i, j)− (E[b] +QS)2

= E[Y 2
|QS=0]− (E[b])2 +Q2

S . (12)

The resulting optimization problem Eq. 13 with E[Ỹ 2]
being convex1 and the affine equality constraint 1Tα = 1
results in α∗ describing a minimum which we compute
using the Lagrange function L(α, λ) with the Lagrange
multiplier λ:

α∗ = arg min
α∈χ

E[Ỹ 2], χ =

{
α ∈ RN

∣∣∣∣∣
N∑
i=1

αi = 1

}
(13)

L(α, λ) = E[Ỹ 2] + λ ·

(
N∑
i=1

αi − 1

)
(14)

∂L

∂αi
= E

[
2 · (Y − E[b]) · ∂

∂αi
(Y − E[b])

]
+ λ

= 2 · E[Y ·Xi]− 2 · E[b] · E[Xi] + λ (15)

Now writing out Y =
∑N
i=1 αi · Xi and rearranging

the set of equations while using covX(i, j) = RX(i, j)−
E[X(i)] ·E[X(j)] yields Eq. 16. If HL is invertible (non-
singular), then α∗ is a unique global minimum:

1With α[ξ] = ξ ·α1 + [1− ξ] ·α2 ∀α1,α2 ∈ RN ,α1 6= α2

ξ ∈ (0, 1) one can show that E[Ỹ 2] is convex as
0 ≥ E[Ỹ 2(α[ξ])]− ξ · E[Ỹ 2(α1)]− [1− ξ] · E[Ỹ 2(α2)]
= [ξ2 − ξ]︸ ︷︷ ︸
<0 ∀ξ∈(0,1)

· (α1 −α2)
T covX(α1 −α2)︸ ︷︷ ︸

=E
[
([α1−α2]TX)2

]
≥0

holds.




0
...
0
1

 =


covX(1, 1) . . . covX(1, N) 1

...
. . .

...
...

covX(N, 1) . . . covX(N,N) 1
1 . . . 1 0


︸ ︷︷ ︸

=HL

·


α∗1
...
α∗N
λ/2

 ,

(16)

IV. UNDERLYING NOISE MODELS

Note that from Eq. 2 and Eq. 3 it follows that:

|tS−i − tS−j | =

{
∆t · |j − i| for CMS, NOCMS
2 ·∆t · |j − i| for SMS, NOSMS

|tS−i − tR−j | =

{
∆t · |j + i− 1| for CMS, NOCMS
∆t · |2(j − i) + 1| for SMS, NOSMS

|tS−i − tS−j | = |tR−i − tR−j |
|tS−i − tR−j | = |tS−j − tR−i| for CMS, NOCMS
|tS−i − tR−j | 6= |tS−j − tR−i| for SMS, NOSMS (17)

We assume that the read noise can be modeled as
a superposition of Lorentzian Random Telegraph Signal
(RTS) noise sources with time-constants τk [11], [12]

RN (t1, t2) =

K∑
k=1

ck · exp (−|t1 − t2|/τk) . (18)

This inherently assumes that the low-pass-filtering char-
acteristic of the readout circuit has a much smaller time-
constant than the Lorentzians. Note, it can be shown that
for a first order filter white noise - e.g. thermal noise -
also takes the shape of a Lorentzian which in this case
determines the smallest time-constant.

RX(i, j) =

(
Id
q

)2

· [2i− 1][2j − 1] · (∆t)2

+

(
Id
q

)
·∆t · (2 ·min[i, j]− 1)

+

K∑
k=1

ck ·
[
2 · e−

∆t·|j−i|
τk − 2 · e−

∆t·|j+i−1|
τk

]
for CMS, NOCMS

=

(
Id
q

)2

(∆t)2 + δ(i, j) ·
(
Id
q

)
·∆t

+

K∑
k=1

ck ·
[
2 · e−

2∆t·|j−i|
τk − e−

∆t·|2(i−j)+1|
τk

−e−
∆t·|2(j−i)+1|

τk

]
for SMS, NOSMS

(19)

Eq. 19 results from the autocorrelation function of a shot
noise process RP (t1, t2) = λ2(t1 − t0)(t2 − t0) + λ ·
min[t1− t0, t2− t0] with t0 = T (cf. Fig. 2) and λ = Id/q
and using E[N(ti) · P (tj)] = 0 together with Eq. 4 and
Eq. 17.

We estimate the model parameters Id and c from CDS
samples [13] of two image sensors A and B using

X = A−1V · [Z(t0)− Z(t0 + t)]

= QS + P (t0, t0 + t) +N(t0)−N(t0 + t)

σ2
X|pm,n(t) = 2 ·RN |pm,n(0)− 2 ·RN |pm,n(t) +

Id
q
· t

= 2 ·
K∑
k=1

ck · [1− exp(−t/τk)] + Id · t/q

[c, τ , Id] = arg min
c̃,τ̃ ,Ĩd

L∑
l=1

∣∣∣S2
X(tl)− σ2

X|pm,n(tl)
∣∣∣2

(20)

with the sample variance S2
X(tl). For Sensor A we

used tl from 10 µs to 140 µs and for Sensor B 3 µs to
120 µs. We assume that the Lorentzian time-constants
can only exhibit a predefined set of values, e.g.
τ = [1 ms, 310 µs, 100 µs, 31 µs, 10 µs, 3.1 µs, 1 µs]. In-
dividual pixels may not exhibit all RTS time-constants.
Hence, for a predefined maximum amount of Lorentzians
per pixel (here 7) we permutate through all combinations
(27 − 1 = 127) starting from the smallest time-constant
and compute the least-squares fit of c, Id. We then force
positive weights by c = max(c, 0). If new parameters
reduce the average absolute fitting error and increase∑
k ck the optimum parameters are updated. The last

condition avoids overfitting. This procedure is executed
until all permutations have been compared. Fig. 3 and
Fig. 4 show example distributions of c and Id after pixel
level regression. The reason that the 1 − CDF curves do
not reach 1 in logscale is that some pixels do not exhibit
these time-constants. Hence, the difference to 1 gives rise
to the significance of τk, ck.
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Figure 3. Fitting parameters of sensor A.

V. RESULTS

Sensor A implements CMS and hence, is used to verify
the model presented in this paper. Here, we varied ∆t
of 10 µs, 20 µs, 40 µs and 80 µs. For each ∆t setting we
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Figure 4. Fitting parameters of sensor B.

acquiring read noise data for x1, x2 and x4 oversampling.
Fig. 5 demonstrates a reasonable resemblance of model
and measurements as long as the total read-time N · ∆t
does not exceed the range of tl used to fit the model as
described in Sec. IV. We determined σ2

Ỹ
using the law of

total variance of Monte-Carlo trials of c, Id|pm,n:

σ2
Ỹ

= αT · E[covX|pm,n ] ·α + var(E[Ỹ |pm,n]) (21)
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measurements of sensor A.

Having verified the validity of the presented model we
now compare CMS, NOCMS, SMS and NOSMS in Fig. 6.
We calculate α∗ based on the expected covariance (cf.
Eq. 16). Again we use Monte-Carlo trials and law of total
variance to determine σ2

Ỹ
.

Here, we selected a ∆t of 4 µs and assumed that
the conversion gain of CMS and SMS can be matched.
Depending on the sensor specifics, FD leakage can become
the dominant noise source in CMS leading to a significant
increase in read noise for, e.g. sensor B. It can be seen
that NOCMS is greatly helpful in reducing the impact
of FD dark current or flicker noise such that instead of
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Figure 6. Oversampling results based on model from sensor A and B.

yielding a potentially narrow localized noise minimum,
read noise can be further reduced until eventually a
plateau is reached. The actual read noise minimum was
reduced by 20 % for sensor A and 23 % for sensor B
by using noise optimization. It can be seen that due to
the high correlation of the signal and read samples noise-
optimization is less helpful for skipper mode-readout. Note
that if one could design a skipper mode readout structure
with sufficiently high conversion gain while keeping the
buried memory storage and sense node leakage currents
sufficiently small, SMS may have a competitive advantage
in reaching ultra-low read noise over CMS or NOCMS.
Note for comparison that [14] reported a PPD with floating
gate-readout structure in a 0.18 µm technology reaching
a conversion gain of 38 µV/ e−. [15] presented TCAD
simulations of a similar PPD device with Skipper readout
achieving possibly 85 µV/ e−.

VI. CONCLUSION

We presented a thorough stochastic signal analysis of
oversampling noise in CMS, NOCMS, SMS and NOSMS
systems. We emphasized the importance of floating dif-
fusion dark current in sub-electron sensing devices and
bring attention to the floating gate amplifier as a potential
alternative for achieving ultra-low read noise.
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