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ABSTRACT
We propose a 25M-pixel full-frame horizontal 2x1RGrB + vertical 1x2Gb hetero dual-pixel image sensor and a new
effective algorithm to restore high-quality 2x2 quad-pixel image data. This proposed camera architecture can make
the number of pixels and the amount of data 50% reduced. Moreover, we apply this architecture to a horizontal
5%x1RGrB + vertical 1x5Gb hetero penta-pixel image sensor as a 5x5 pentacosa-pixel light field camera; this technology

can reduce 80% of the data.

INTRODUCTION

Sensor-based phase-detection autofocus (PDAF) with a dual-
pixel image sensor [1-6] is one of the most important functions
to perform fast and accurate AF in digital interchangeable lens
cameras (DILCs).

Fig.1 shows the optical relationships between photodiodes A
through D, pupils A through D, and viewpoint images A
through D in a 2x2 quad-pixel camera [7-8].
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Fig.1 The optical system of a 2x2 quad-pixel camera. Light rays
with incident angles as from pupils A through D of a taking lens
are received by photodiodes A through D, respectively.

The horizontal 2x1 dual-pixel image sensor in Fig.2 (a) can
detect as PDAF only vertical lines using the horizontal paral-
lax and not horizontal lines. On the other hand, the 2x2 quad-
pixel image sensor in Fig.2 (b) can detect as PDAF both verti-
cal and horizontal lines. However, the 2x2 quad-pixel image
sensor needs twice the number of pixels, and the reading speed
of the sensor will be slower by half [5]. As a result, it makes
rolling shutter distortion larger or vertical PDAF performance
lower when shooting high-speed moving objects.

To resolve the above tradeoff, we propose a 25M-pixel full-
frame horizontal 2x1RGrB + vertical 1x2Gb hetero dual-pixel
image sensor in Fig.2 (c) and a new effective algorithm to cre-
ate 2x2 quad-pixel image data. This proposed camera archi-
tecture can make the number of pixels and the amount of data
50% reduced.

Moreover, we apply this architecture to a 5x1RGrB+1x5Ghb
hetero penta-pixel image sensor in Fig.15 (b) and reduce 80%
pixels of a light field camera.
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Fig.2 Layout diagrams of pixel array patterns.

QUAD-PIXEL CAMERA
WITH HETARO DUAL-PIXEL SENSOR

To verify the principle, we made prototyping a 4.14um 50M-
pixel full-frame 2x2 quad-pixel image sensor. Then, we com-
pared the proposed 25M-pixel hetero dual-pixel pattern (c) and
the other 50M-pixel quad-pixel pattern (b) and 25M-pixel
staggered dual-pixel pattern (d) shown in Fig.2.

Fig.3 (a) shows the diagonal cross-section of the prototype
2x2 quad-pixel with a 4-peak microlens and the light intensity
distribution in the pixels using Finite-Difference Time-Do-
main (FDTD) simulation of an electromagnetic wave having a
wavelength A of 540nm. An ordinary pixel in Fig.3 (b) has
each microlens formed on each photodiode. In contrast, the
prototyped pixels in Fig.3 (a) have one microlens synthesized
from 4 eccentric sub-microlenses formed on 2x2 photodiodes.
In Fig.4, the experimental/simulation data of the pupil inten-
sity distributions of the prototyped pixels HA(=A+C), HB
(=B+D), and I (=A+B+C+D) are shown by solid/dotted red, blue,
and green lines, respectively.
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Fig.3 The diagonal cross-section of the prototype 2X2 quad-pixel
with a 4-peak microlens and the light intensity distridution.
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Fig.4 The pupil intensity distribution of the prototype
2X%2 quad-pixel image sensor.

QUAD-PIXEL RESTORATION ALGORITHM

There are two fundamental reasons why the proposed algo-
rithm can restore high-resolution 2x2 quad-viewpoint images
from the compressed hetero dual-pixel data in Fig.2 (c).

The first is the higher symmetry of the hetero dual-pixel than
other patterns, such as the staggered dual-pixel in Fig.2 (d) in
terms of horizontal and vertical division G pixels determining
the resolution. On the hetero dual-pixel, for each vertical divi-
sion Gb pixel, horizontal division Gr pixels are arranged at all
four diagonal nearest neighbors, and vice versa.

The second is that the standard image I (=A+B+C+D) can be
used as reference data at all positions regardless of horizontal
or vertical division pixels.

In detail, first, we restore the left/right viewpoint image HA(=

A+C) /HB(=B+D) at position (ix,iy+1) of each Gb pixel in Fig.5.

The numerator is the sum of the left/right viewpoint images
HA/HB(ix£1,iy+1£1) at four diagonal neighbors of Gr pixels.
The denominator is the sum of the images I(ixx1,iy+1+1) of
Gr pixels. The left/right viewpoint image HA/HB (ix,iy+1) of
the Gb pixel in Fig.5 equals the image I(ix,iy+1) multiplied by
the ratio of the numerator divided by the denominator.

Second, we create the upper/lower viewpoint image VA(=
A+B) /VB(=C+D) at (ix+1,iy) of each Gr, similarly in Fig.6.

Third, we restore the upper/lower viewpoint image VA/VB
at (ix,iy) of each R pixel in Fig.7. The numerator is the sum of
the upper/lower viewpoint images VA/VB at four nearest
neighbors (ixt1,iy) and (ix,iy+1) of G pixels. The denominator
is the sum of the images I(ix+1,iy) and I(ix,iy£1) of G pixels.
The upper/lower viewpoint image VA/VB(ix,iy) of the R pixel
in Fig.7 equals the image I(ix,iy) of the R pixel multiplied by
the ratio of the numerator divided by the denominator.

Fourth, we create the upper/lower viewpoint image VA/VB
(ix+1,iy+1) of each B pixel, similarly in Fig.8.

Finally, we approximate the 2x2 quad-viewpoint images
A= min[ HA(=A+C),VA(=A+B) ], B= min[ HB(=B+D),VA(=A+B) ],
C= min[ HA(=A+C),VB(=C+D) ], D= min[ HB(=B+D),VB(=C+D) ].

Fig.10 shows 2x2 quad-viewpoint images A through D re-
stored by the proposed algorithm from the hetero dual-pixel
data, and Fig.11 (b) shows the partially enlarged image A of
Fig.10. Even though the hetero dual-pixel data is 50% reduced,
these restored images can be as high resolution as the original
quad-viewpoint images of the quad-pixel in Fig.9 and Fig.11
(a). In contrast, the reference image A of the staggered dual-
pixel in Fig.11 (d) is lower resolution than others.

Fig.13 shows the defocus map detected horizontally and ver-
tically by the hetero dual-pixel sensor as cross PDAF. The de-
focus map of the hetero cross PDAF is also as high perfor-
mance as the original one of the quad-pixel sensor in Fig.12.
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Fig.5 The proposed algorithm restoring the left/right viewpoint
data HA/HB of Gb pixels.
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Fig.6 The proposed algorithm restoring the upper/lower viewpoint
data VA/VB of Gr pixels.
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Fig.7 The proposed algorithm restoring the upper/lower viewpoint
data VA/VB of R pixels.
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Fig.8 The proposed algorithm restoring the upper/lower viewpoint
data VA/VB of B pixels.
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Fig.16 5%5 pentacosa-viewpoint images of the SXIRGB+1X5G
hetero penta-pixel image sensor.



PENTACOSA-PIXEL CAMERA
WITH HETERO PENTA-PIXEL SENSOR

A light field camera needs more divided pixels and viewpoint
images than a sensor-based PDAF camera to realize a post-
shooting function or computational photographic functions,
such as refocus [9]. Therefore, the reduction of the data is
more critical.

Fig.14 and Fig.15 (a) show the optical system of a 5x5 pen-
tacosa-pixel camera as a light field camera. The more divided
pixels, the more effectively the developed new architecture
can reduce the data. Hence, we apply the proposed architecture
to a 5x5 pentacosa-pixel light field camera with a horizontal
5x1RGrB + vertical 1x5Gb hetero penta-pixel image sensor in
Fig.15 (b), similarly.

To verify the principle, we made prototyping a 5.16um ap-
proximately 9.4M-pixel 19.35mmx12.9mm 5x5 pentacosa-
pixel image sensor. Then, we compared the proposed 1.88M-
pixel 5x1RGrB+1x5Gb hetero penta-pixel data reduced by
80% in Fig.15 (b) and the original 9.4M-pixel 5x5 pentacosa-
pixel data in Fig.15 (a).

Fig.16 shows 5x5 pentacosa-viewpoint images from upper-
left HIV1 to lower-right HSVS5 restored by the proposed algo-
rithm from the 5X1RGrB+1x5Gb hetero penta-pixel data, and
Fig.18 shows the enlarged upper-left viewpoint image H1V1
of Fig.16. On the other hand, Fig.17 shows the enlarged upper-
left viewpoint image H1V1 of the original 5x5 pentacosa-
pixel image sensor.

Even though the 5x1RGrB+1x5Gb hetero penta-pixel data is
80% reduced, the restored image H1V1 in Fig.18 can be as
high resolution as the original image H1V1 in Fig.17.

Moreover, because of the signal addition of five pixels, the
restored upper-left viewpoint image H1V1 in Fig.18 is much
smoother than the original upper-left viewpoint image H1V1
in Fig.17.

CONCLUSION AND DISCUSSION

We developed the 25M-pixel full-frame horizontal 2x1
RGrB + vertical 1x2Gb hetero dual-pixel image sensor and the
new effective algorithm restoring high-resolution 2x2 quad-
pixel images; this technology reduced 50% of the data.

Moreover, we applied this architecture to the horizontal
5x1RGrB + vertical 1x5Gb hetero penta-pixel image sensor
as a 5x5 pentacosa-pixel light field camera; this reduced 80%
of the data.

To generalize and summarize, we proposed compressed
horizontal Nx1RGrB + vertical 1xNGb hetero multi-pixel
image sensors and the effective algorithm to restore the NxN
multi-pixel image data. This camera architecture can reduce
the number of pixels to 1/N in multi-pixel cameras.

In future work, we consider that it is necessary to develop the
backside-illuminated (BSI) stacked CMOS image sensor
based on the proposed camera architecture for realizing high-
performance horizontally and vertically cross PDAF in high-
speed continuous shooting. It is also necessary to research
practical computational photographic functions with this
technology.
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