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Abstract 

We present a 1Mpixel, 80k fps global shutter BSI CMOS image sensor with 160 CML outputs each running at 
6.25Gbit/sec. The sensor allows for wide field-of-view, high resolution imaging at high speed, which is crucial for 
research applications such as combustion imaging, crack propagation, and flow visualization using particle image 
velocimetry. 
 

Introduction 
To achieve 80k frame-per-second (fps) imaging with commercial high-speed scientific cameras often requires 
significantly reducing the resolution in exchange for a high frame rate, limiting the ability to image a wide field of 
view. Here, we present a 1Mpixel (1280 x 832) global shutter BSI CMOS image sensor capable of 80k fps at full 
resolution. The sensor size is 23.7mm by 15.4mm, with a pixel pitch of 18.54µm, and is fabricated in a 6 metal, 
0.11µm BSI process. 
 
To reach this combination of resolution and frame rate, there are several important architectural aspects to 
consider in order to avoid bottlenecks in the design. The first is how much parallelism can be accommodated, and 
how can the signal chain timing be pipelined to overlap operations. With such a large amount of data necessary to 
send off-chip, the clocking and data transmission choices are also critical. The supply distribution and power 
dissipation are important in determining the sensor packaging and camera cooling requirements.  
 
The other aspect of the design is that the pinned photodiode charge transfer and correlated double sampling 
techniques used to reduce noise and non-uniformities take too long to fit in the readout time.  Although this is 
perhaps not an inherent limitation when stacked sensors with pixel-wise connections are considered, for the 
process technology involved it meant keeping the signal chain operations as simple and fast as possible, and 
depending on calibration and dark-frame subtraction in the camera system to remove non-uniformities. 
 

Sensor Architecture 
The pixel uses a partially pinned photodiode, with voltage mode global shutter storage. The photodiode uses 
tapering and multiple implants to improve the photogenerated carrier transit time to the unpinned region. 2x2 
binning is also supported, through binning connections in the pixel. 
 
Pixel sampling and conversion proceeds 32 rows at a time, with 16 rows sampled at the top of the array and 16 
sampled by the bottom, in a row time of less than 500 nsec. Only the pixel signal voltage is sampled - 
unfortunately, there is not enough time to sample a reset level to remove the pixel source follower voltage non-
uniformity; this must be removed at the camera level. The analog signal chain is shown in Fig. 3, and the timing 
operations are shown in Fig. 4. The timing is pipelined as much as possible, with overlapping pixel sampling, ADC 
conversion, and digital readout. The pixel signal is stored on one of the sampling capacitors, while the other is 
being used for ADC conversion.  Prior to each conversion, the pre-amp is reset by connecting both inputs to a 
common reference, and the comparator is auto-zeroed. The gained offset of the pre-amp appears at the output of 
the pre-amp, and is stored on the coupling capacitor to achieve output offset cancellation.  The comparator offset 
is also stored on the coupling capacitor during auto-zeroing for input offset cancellation. Output offset cancellation 
has the drawback of limiting the gain of the pre-amp, since the gained worst-case offset must stay within the 
output range of the pre-amp. However, it is faster than auto-zeroing onto the pre-amp input capacitors, and allows 
for alternating between input sampling capacitors. 



 
The design is arranged into self-contained “superblocks”, where each superblock is dedicated to 64 columns of 
pixels, and contains all of the biasing, ramp and counter generation, digital logic, CML clock input and output 
drivers, and 1024 ADCs to read out that block of pixels (Fig. 1 & 2). Within the superblock, the single-slope ADCs 
are arranged in banks of 256 ADCs with associated memory to store the converted values. The 4 banks of 256 ADCs 
are arranged in two stripes in the superblock, one on top of the other. The sampling capacitors and ADC are on a 
2um pitch, so as to provide a routing channel in the center of each superblock for power, biasing, and the ramp 
signals.  
 
The CML outputs are power hungry and require precious FPGA receiver resources. To maintain the flexibility of 
using the sensor in a smaller camera system with fewer receiver channels, a data concentration scheme was 
implemented to route the digital data from exterior superblocks towards the center superblocks, and power-down 
the unused CML outputs. Several output configurations are supported to match desired row-times with available 
receiver channels. 
 

Design Challenges 
There are 40,960 converters in the sensor, in 40 total superblocks. The choice of 40 superblocks was determined 
by a trade-off between high-speed FPGA input pins required in the camera and the maximum output data-rate the 
process could support.  In the end, we also hit a ceiling on the number of superblocks due to the pad ring along the 
top and bottom of the die being pad limited. 
 
The sensor requires a CML input clock for each superblock, for a total of 40 differential 3.125GHz input clocks.  As 
opposed to distributing a high-speed clock internally across superblocks, or including multiple PLLs on chip, this 
choice obviously puts pressure on the camera system to manage and distribute many high-speed clocks. It did, 
however, limit the power dissipation and reduce the skew, jitter, and duty cycle concerns that would be limitations 
to distributing the high-speed clocks on-chip. As for using PLLs, the clock speed was high enough that we were 
concerned that the VCO in this process, which we would typically run at 2x the clock rate, would not oscillate at 
the frequency required over all corners. 
 
Since the sensor is segmented into superblocks, mismatch between superblocks can result in difficult to correct 
block-wise artifacts. One potential source of mismatch is from a lack of synchronization of the timing between 
superblocks. The sensor was designed with a carefully balanced H-tree to distribute the global synchronization 
pulses to each superblock. Another source of mismatch is due to varying IR drops on the supply rails; this was 
addressed by limiting the variation in the current requirements during the different phases of operation, and by 
star connections in the layout to isolate the IR drops seen by each block. 
 
Another major source of mismatch is the variation in the ramp generation, which is done independently in each 
superblock. After prototype evaluation, it was decided to short the ramp outputs across all of the superblocks, in 
essence creating one large, distributed ramp generator. With this approach, there are no sharp discontinuities in 
the ramp offset or slope from one column to the next, which would make calibration difficult. 
 

Results & Summary 
The sensor demonstrates a dynamic range of 52dB at maximum speed and a linearity error of <1.75% up to 90% of 
the full swing.  The dynamic range is limited by the swing of the ramp at the maximum frame rate; better dynamic 
range can be achieved with longer row times. Sensor specifications are given in Table 1. Fig. 5 shows three 
extracted frames from a video shot with the sensor of tempered glass cracking. This recording used a reduced 
vertical resolution and binning to achieve 1.7Mfps, with 95 nsec exposure time (courtesy of Citius Imaging). Fig. 6 is 
a frame from a 100kfps 1280x560 video of a cell-phone screen cracking. 
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Parameter Value Notes 
Process 0.11um BSI  
Resolution 1280 x 832  
Pixel Size 18.54um  
Frame Rate 80,000 fps At full resolution 
Bit Resolution 10/11/12 Depending on row time 
Output Ports 160 @ 6.25Gbit/s  
Dynamic Range 52dB Limited by ADC ramp range at max frame rate 
PLS < 1:10000  
Linearity < 1.75% 10-90% of swing 
FPN < 1%  
Supply 3.3V / 2.5V / 1.2V Pixel / Analog / Digital & CML supply 
Power < 40W  

Table 1 – Sensor Specifications 
 
 
 
 
 
 
 
 

 
Figure 1 – Sensor block diagram & die plot 
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Figure 3 – Signal Chain     

 

 
Figure 4 –Timing Operations 

 
 

 
Figure 5 – Three (non-successive) frames from a 1.7Mfps video of glass cracking 
 
 

 
Figure 6 – Frame from a 100kfps video of cell-phone screen cracking 
 

 
Figure 2 – Superblock floorplan 
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