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ABSTRACT 

This paper presents newly developed two high-
precision CMOS proximity capacitance image 
sensors: Chip A with 12 μm pitch pixels with a large 
detection area of 168 mm2; Chip B with 2.8 μm pitch 
1.8 M pixels for a higher resolution. Both fabricated 
chips achieved a capacitance detection precision of 
less than 100 zF (10-19 F) at an input voltage of 20 V 
and less than 10 zF (10-20 F) at 300 V due to the noise 
cancelling technique. Furthermore, by using multiple 
input pulse amplitudes, a capacitance detection 
dynamic range of 120 dB was achieved. The examples 
of capacitance imaging using the fabricated chips are 
also demonstrated. 
 

INTRODUCTION 
Image sensors can capture two-dimensional 

information from the real world and are used in 
various fields such as autonomous driving and factory 
automation for improving safety, security as well as 
productivity. Among the many types of image sensors, 
proximity capacitance image sensors can detect and 
visualize two-dimensional distributions of capacitance 
between the sensors and targets. Unlike optical image 
sensors, these sensors can detect electrical connections 
as well as microroughness and minute irregularities on 
the surface of objects and distribution of substances 
inside organic, solid, and liquid materials. They are 
used in various applications such as wiring inspection 
for flat panel displays and printed circuit boards, 
fingerprint authentication, material surface 
observation, and so on.[1-5] These applications require 
not only a high precision to detect minute capacitance, 
but also a large detection area to improve the 
inspection efficiency of a large area targets. In addition, 
a high spatial resolution is required to capture small 
targets such as biological cells. 

So far, discrete sensors with aF-order detection 
precision[6] and an array sensor with a detection area 
of 8.73 cm2 with 11.4 µm pitch pixels[4] have been 
reported. However, a simultaneous achievement of a 
detection precision of less than aF and a detection area 
of more than 1 cm2 or, a pixel pitch of less than 10 μm 
toward a higher resolution has not been reported yet. 
Recently, we have presented a prototype CMOS 
proximity capacitance image sensor with 256H×256V 
16 µm pitch pixels achieving 100 zF detection 
precision due to the advanced noise cancelling 
technique.[7-8] In this paper, we describe the newly 
developed two chips to increase imaging area and 
spatial resolution: the Chip A with large format 12 µm 
pixels for practical inspection applications and the 
Chip B with high-resolution 2.8 µm pitch pixels. The 

operating principle, circuit and layout design, and chip 
measurement results are described as follow.  
 

DESIGN AND STRUCTURE OF 
DEVELOPED CHIPS 

Fig. 1 shows the cross-sectional diagrams illustrating 
the proximity capacitance imaging setups. For the 
proposed proximity capacitance sensors, a counter 
electrode is introduced to which the input pulse signal 
is supplied. For a conductor target, the input pulse 
signal is supplied by a probe and the target itself is 
used as the counter electrode, as in (a). It is also 
possible to measure proximity capacitance without a 
probe by supplying the input pulse signal through a 
coupling capacitance between the target and the 
counter electrode in the chip, as in (b). For a dielectric 
target, the measurement is performed by placing a flat 
counter electrode and supplying an input pulse signal 
to it, as in (c). For a target in a liquid, the measurement 
is carried out by placing a probe or using the guard ring 
in the sensor as a counter electrode and supplying the 
input pulse signal to it, as in (d) or (e). By using an 
appropriate measurement method, various objects can 
be measured. 

Fig. 2 shows the circuit block diagram of the 
developed chips. Each pixel is comprised of a 
detection electrode and a readout circuit. First, the 
vertical scanning circuit selects a row and acquires the 
signal, then the column S/H circuit holds the signal, 
and the horizontal scanning circuit selects a column 
and reads the signal out of the chip in sequence. 

 
Fig. 1 Typical measurement configurations. Chip B has 
an on-chip counter electrode outside the pixel array, 
allowing imaging without a probe as in (b). 
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Fig. 3 shows the simplified sensor circuit and 
operational timing diagrams of the normal and the high 
dynamic range (HDR) modes. Each pixel contains a 
detection electrode capacitance (CC) which is 
connected to the measurement capacitance (CS) in 
series. The voltage of floating detection electrode node 
between CC and CS is readout twice; first after the reset 
operation, and second after the voltage level is 
changed at the counter electrode. By taking the 
difference of the two signals, thermal noise remained 
at the floating node, low frequency noise of in-pixel 
SF and fixed pattern noise are cancelled. The output is 
obtained by the following equation. 

𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂 = 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 − 𝑉𝑉𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂 =
𝐶𝐶𝑆𝑆

𝐶𝐶𝐶𝐶 + 𝐶𝐶𝑆𝑆
∙ 𝑉𝑉𝐼𝐼𝐼𝐼 ∙ 𝐺𝐺𝑆𝑆𝑆𝑆 (1) 

Here, the proximity capacitance signal (VOUT) is 
proportional to the voltage amplitude (VIN) applied to 
the counter electrode. The larger the VIN applied, the 
smaller the capacitance can be detected, but if the 
capacitance is large, the signal output will saturate 
beyond the signal readout range of the chips. In the 
HDR mode, two or more voltage amplitudes are 
applied to measure a wide range of capacitance within 
a signal readout range of the chips. 

Fig. 4 shows the layout diagrams and circuit 
schematics of the developed pixels, respectively. The 
pixel in Chip A uses an isolated P-well in the deep N-
well for the SF to improve the gain and it also forms a 
protection diode to protect the floating node from high 
voltage. In the pixel of Chip B, the SF is formed in a 
normal P-well, and one side of the protection diodes 
was removed to reduce the pixel size. As a result, the 
pixel size of Chip B becomes 1/18th of that of Chip A. 
 

CHIP FABRICATION AND 
MEASUREMENT RESULTS 

Fig. 5 shows the micrographs of the fabricated chips. 
A 0.18 µm 1-poly-Si 5-metal CIS technology was 
employed. The chip size, number of pixels and pixel 
pitch were 14.4×14.4 mm2, 1080H×1080V and 12 µm 
for Chip A, and 4.8×4.8 mm2, 1408H×1280V and 2.8 
µm for Chip B, respectively. 

Fig. 6 shows the cross-sectional pixel TEM image of 
Chip B. The first through fourth metal layers were 
used for wiring, and the fifth metal on the top layer is 
used as the detection electrode and the guard ring. 

Fig. 7 shows the measurement system. It consists of 
a headboard with the fabricated sensor chip mounted 
face up, an analog front-end (AFE) circuit board with 
voltage regulators and a 14 bit differential ADC 
directly connected to VOUTN and VOUTS, a FPGA board 

to supply operation pulse to the sensor chip, and a PC. 
Fig. 8 shows the measured noise characteristics 

without any measurement targets obtained without and 
with the noise cancelling. Without the noise cancelling, 
the input referred FPN and temporal random noise 
arises mainly due to the threshold voltage variation of 
SF and column fixed pattern noise, and the kTC noise 
at the detection electrode node. They were 19.3 mVrms 
and 1.29 mVrms, respectively for Chip A, and 16.4 
mVrms, 1.71 mVrms, respectively for Chip B. These 
noise components were significantly reduced by the 
noise cancelling to 37.8 µVrms and 267 µVrms, 

 
Fig. 2 Circuit block diagram of the two chips. 

 
Fig. 3 Simplified circuit and operation timing. In HDR 
mode, signals are readout multiple times for each row 
while varying VIN. 

 
Fig. 4 (a-b) layout diagrams of pixels up to the 1st metal layer and circuit schematics and (c) the top metal layer layout. 
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Fig. 5 The micrograph of the fabricated CMOS proximity capacitance image 
sensor Chips A and B. 

Fig. 6 The cross-sectional pixel TEM 
image of Chip B. 

 

 
Fig. 7 The measurement system for characterizing the 
performance of fabricated sensor chips. 

 
Fig. 8 Noise characteristics without and with the noise 
cancelling (NC). 

 
respectively for Chip A and 137 µVrms and 887 µVrms, 
respectively for Chip B, without averaging. 
Furthermore, temporal random noise can be reduced 
by multiple frames averaging; 25.2 μVrms was 
achieved for Chip A and 85.5 μVrms for Chip B, 
respectively by 100 frames averaging. 

CC in equation (1) was calculated to be 5.4 fF for 
Chip A and 2.5 fF for Chip B from the parasitic 
capacitance extraction, and 2.8 fF was obtained for the 
fabricated Chip B from the measured photon transfer 
curve using the protection diode as a photodiode. 

Fig. 9 shows the measured transfer characteristic of 
the two chips with various measurement capacitance 
conditions. Here signal output is plotted as a function 
of the voltage amplitude of input pulse. The colored 
dots show the measured values, and the black lines are 
the calculated characteristics at each capacitance value, 
using equation (1) and the CC obtained from the 
simulation and the measurement for the Chip A and B, 

respectively. The results indicate that 1 fF to less than 
10 zF of proximity capacitance was successfully 
measured in the range of input pulse amplitude below 
300 V. In addition, the input referred signal range was 
confirmed to be over 1.0 V with a good linearity. 

Fig. 10 shows a fingerprint image captured by Chip 
A. Owing to its large pixel area, the entire fingerprint 
was captured. In addition, sweat gland pores of several 
tens of µm in diameter were clearly captured. 

Fig. 11 shows capacitance images of a logic IC 
(TC74HC02) captured by the two chips. For the Chip 
B, the resolution was greatly improved, and the shape 
of the wiring and transistors could be clearly captured. 
Furthermore, by shooting in HDR mode, it was 
possible to capture both small and large capacitance 
regions simultaneously. 

Fig. 12 shows the images of a drop of saline solution 
on the sensor surface captured by Chip B with the 
setup in Fig. 1(e) without external counter electrode. 
The water evaporates over time, and the final salt 
crystal precipitation was clearly captured. 

Table Ⅰ shows the performance of the developed chips. 
Compared to our previous work, Chip A achieved 10 
times larger imaging area and a higher precision, and 
Chip B achieved 18 times higher resolution while 
maintaining the precision. 

Fig. 13 shows the benchmarking of the developed 
proximity capacitance CMOS image sensors with 
other array and discreate capacitance sensors.[1-12] The 
developed sensors have a large pixel area or a higher 
resolution while achieving higher detection accuracy 
than other sensors. 
 

CONCLUSION 
Two high-precision CMOS proximity capacitance 

image sensors were presented in this paper. Both chips 
successfully achieved real-time proximity capacitance 
imaging with high precision. Using the Chip A with a 
large pixel area, the measurement efficiency will be 
improved especially for large measurement targets like 
flat panel displays. It is production ready for wiring 
inspection applications. For the Chip B with high-
resolution pixels, it is expected to be useful for the 
visualization of microscopic objects such as living 
cells. The developed sensors can be utilized for high 
efficiency measurement tools in the manufacturing, 
biomedical, life scientific fields and more. 
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Fig. 9 Measured transfer characteristics of the Chips A and B with 
various capacitance conditions. 

Fig. 10 Captured image of fingerprint by the 
large format Chip A. (Blurred for privacy) 

 

 

 

 

Fig. 11 Captured images of a general-purpose logic 
IC (TC74HC02) for resolution comparison between 
the Chip A and B. 

Fig. 12 Captured images of a drop of saline solution on the 
sensor surface drying out as time advances captured by the Chip 
B. 

 
Table Ⅰ Performance summary of the developed sensors. 

 
 Fig. 13 Pixel pitch and detection accuracy for benchmarking 

with other sensors and examples of target. 
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Process 1-Poly 5-Metal 0.18µm CMOS
Die Size 4,800μmH×4,800μmV 14,400μmH×14,400μmV 4,800μmH×4,800μmV

Pixel Area 4,096µmH×4,096µmV 12,960μmH×12,960μmV 3,942.4µmH×3,584µmV

# of Pixels 256H ×256V 1,080H ×1,080V 1,408H ×1,280V

Pixel Size 16µmH×16µmV 12µmH×12µmV 2.8µmH×2.8µmV

Detection Electrode 
Size 12µmH×12µmV 8.2µmH×8.2µmV 1.56µmH×1.56µmV
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