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Abstract  As self-driving cars and mobile metaverse devices have been developed intensively, LiDAR sensors have emerged 
because they can offer precise depth images in real-time. They employ mainly two technologies; direct time-of-flight (dToF) 
techniques based on single-photon avalanche diodes (SPAD) support long-range detection and high background resilience, while 
indirect ToF (iToF) counterparts provide high spatial resolution and low depth noise without a complicated time-to-digital converter 
(TDC). In this paper, we present flash LiDAR sensors with three zoom histogramming TDCs (hTDC) combining both dToF and 
iToF techniques for utilizing their advantages simultaneously. Binary and quaternary searching algorithms are introduced to 
minimize memory size in the hTDC, and analog counters are employed to realize an area- and energy-efficient LiDAR sensor. The 
overall architecture, detailed circuit implementation, and measurement results are shown clearly. 
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1. On-chip Histogramming TDC Architecture
Data rates of LiDAR sensors are much larger than those of

color image sensors with the same spatial resolution and frame 
rate because ToF values from the whole array in every laser 
emission of a few µs should be recorded. An on-chip digital 
signal processor (DSP) or hTDCs have been integrated into 
LiDAR sensors to compress ToF data and directly estimate 
depth information [1-4]. However, a large number of memories 
corresponding to the number of time bins are also burdensome 
to integrate hTDCs into pixels in flash LiDAR sensors. To 
address this issue, two-step hTDCs have been reported [5-8]. In 
this paper, three hTDC architectures inspired by the SAR ADC 
are presented.  

2. Successive Approximation (SA) hTDC
 The SA hTDC decides one bit of the ToF value at each step in 
the binary search manner [6]. The entire time bin is divided into 
two, up and down bins, and the numbers of SPAD pulses 
generated in both bins are compared with each other. A winning 
bin in the comparison is selected as the next time period to be 
searched. This process is recursively conducted until all ToF 
values are determined. A single up-down counter is required, 
minimizing the memory size. The iToF technique is also 
incorporated to improve the depth resolution. 

3. Quaternary Searching hTDC
The proposed SA hTDC has been successfully integrated into

each pixel with a single up-down counter at the expense of a 
long conversion time. Moreover, it suffers from background 
light especially in the first step because the first period is half of 
the whole duration, which is quite long. To overcome these 
issues, we propose the quaternary search hTDC dividing the 
bins by four in each step, doubling the frame rate [7]. Since the 
time bin width is reduced by half, the signal-to-background ratio 
is also enhanced by a factor of two and exponentially improved 
in consecutive steps. The four-phase iToF calculation can ignore 
background light in the fine TDC operation as well. Fabricated 
in a 110-nm BSI, 30-fps 80´60 depth images can be obtained 
under a 30-klux background light condition. 

4. SA hTDC with Analog Counters
Our both hTDCs consist of digital up-down counters that

consume large power with high-speed clock frequencies over 
300 MHz. The power dissipation is proportional to the intensity 
of background light, which is unsuitable for low-power LiDAR 
sensors. We devise analog counters to replace the digital 
counterparts for an area- and energy-efficient SA hTDC 
architecture [8]. In addition, each pixel creates its own ramp 
signal by using the same analog counter, compensating for its 
PVT variation. Compared with the digital counter, the proposed 
analog counter consumes 3300´ lower power and occupies 16´ 
smaller area, realizing a dToF sensor with 100´80 pixel array 
fabricated in a 110-nm BSI process. 
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Block Diagram of SPAD dToF Sensor
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Overall Architecture

• In-pixel zoom histogramming
TDC
– dToF coarse TDC
– iToF fine phase domain TDC 

for zoomed-in ToF value
• Exponential counter for 

binary search with fast 
operating speed

• Window generator for 
managing time bins
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Chip Photograph

Process 110nm CIS CMOS
Pixel Array 48 x 40
Pixel Size 110 x 80 µm2

PWR 
Consumption 840 mW

Chip Size 5900 x 5240 µm2

ZH-TDC 4000 µm2

TDC Depth Coarse 7-b / Fine 6-b

TDC resolution Coarse 5 ns / Fine 90 ps
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Depth Image

Long range (0~9m)Zoomed short range
(0~0.75cm)

Target objects
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Issues in Zoom hTDC Architecture

• Synthesis of 9 sub-
frames: low frame rate, 
motion artifact

• Low signal to background 
ratio (SBR)

• Slow SBR improvement
• Phase detection error by 

background light
à Need to have another 
background sub-frame

7

7

Quaternary Search hTDC

• The whole range is divided by four.
• Even and odd bins are compared to determine ToF[MSB].
• Both counters are compared to determine ToF[MSB-1].

S. Park, ISSCC 2022
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Time-Gated Δ-Intensity Phase Detection

• Background light Immunity! J
• Reduced motion artifact! J
• High frame rate! J
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Pixel Architecture
• 6 SPADs w/ AFE & 

masking mem.
• Coincidence 

detection circuit
• Two 9-b UDC for 

quaternary search
• Timing generator 

for time bin 
management

• Clock repeater 
shared by four 
neighbor pixels
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Fabricated Prototype
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Depth Image in a Short Range

Captured in 30fps w/ 30klux background light

12

12

79



Other Issues in Previous hTDCs

Large pixel size
Large power consumption
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80
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Solution: Analog counter 
replacing area- and power-

hungry digital counter
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Zoom hTDC Architecture w/ Analog Counter

• TDC/ADC Dual Mode 
10-bit Counter
– TDC Mode: Timing 

Generator
– ADC Mode: 

10-bit Counter

Quench circuit Monostable 
circuit

Analog counter

∆-Sampler
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Proposed Analog Counter

• High linearity
– Output independent ∆VO

– Use the cascode stage of MP2

without the op-amp
• Small area 
• Low power consumption 
• Step-tunability 
• Low leakage on output node 

Proposed charge injecting AC
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• The ramp signal is also 
generated by an in-pixel analog 
counter.

Self-Calibrated A/D Conversion

• The SPAD count of 
the two pixels = 7

• Integration time • A/D Conversion

Correct!!
∆Vramp= ∆Vo,pix
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Chip Micrograph
Process 110nm BSI

Pixel array 100×80
Pixel pitch 45 µm
Chip power Digital: 477 mW

Analog: 50 mW
Chip size 5.9×5.2 mm2

TDC Type In-pixel SA 
analog hTDC

TDC area 1038 µm2

Histogram area 72 µm2
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Indoor Depth Image
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