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Abstract: Time-of-Flight (ToF) imaging is an active 3D imaging technique that leverages the fact that time of arrivals
of photons can be used to encode the 3D geometry of a scene. Decoding distances from photon arrivals requires time-
resolved pixels, known as ToF pixels. ToF imaging is nowadays a mature technology and a number of design choices
have become standard, be due to legacy from initial designs, coherence with conventional imaging, or simplicity. In this
talk we draw attention to three typically unspoken design tradeoffs and unveil their potential to refine the performance
of future ToF imaging systems. These are: 1) passive operation, 2) bit depth, and 3) demodulation schemes.
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1. Introduction

Time-of-Flight (ToF) imaging is an active 3D imaging
technique that leverages the fact that photons can be used to
encode the 3D geometry of the scene in their arrival times,
thanks to the constancy of the speed of light in a given medium.
The scene is flood-illuminated with modulated light and the
reflected light is projected onto an array of demodulating pixels
by means of a lens. These pixels, known as ToF pixels, are
necessarily endowed with time-resolving capabilities. In other
words, the measured value depends on when the photon arrivals
occur, by virtue of a time-domain control signal. ToF imaging is
nowadays a mature technology and a number of design choices
have become standard, be due to legacy from initial designs,
coherence with conventional imaging, or simplicity. In this talk
we focus on three often-neglected design tradeoffs and unveil
their potential to further improve the performance of state-of-
the-art ToF imaging systems [1].

2. Collaboration instead of competition

A key opportunity that has remained largely ignored to date is
the exploitation of existing sources of modulated light. With the
increasing presence of LEDs and VCSELs as light sources in
illumination systems, novel devices often exploit the modulation
bandwidth of these emitters to provide simultaneous lighting
and communications. We will show how such opportunity
illuminators can be leveraged to obtain “passive” ToF imaging.
Recent works have shown the feasibility of this idea,
demonstrating depth estimation without photon emission,
leveraging existing VLC and LiFi modules [2].

3. One-bit ToF imaging

A second design parameter that is often overseen is the bit
depth of the measurements. Typically, uniform quantization at
constant bit depth is assumed. The number of bits is then chosen
to obtain the resolution dictated by the best-case noise floor of
the measurements. This is suboptimal, in general. In modern
systems acquiring multiple frames of raw data for generating
each  depth
measurements

consecutive
low-bit
quantization schemes. The band-limited nature of real cross-

image, correlations between

can be exploited to implement
correlation functions allows for one-bit ToF imaging. This idea
was first introduced in [3], where multi-path ToF imaging was
demonstrated using one-bit ToF raw data obtained using well-

understood noise-shaping techniques.
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4. Demodulation schemes for

superresolution

The third often-neglected design possibility is the engineering
of optimal demodulation functions, so that the maximum
amount of information from the scene response function (SRF)
is captured with the minimal number of measurements. This
allows for minimizing the number of measurements (thus,
maximizing the frame rate) required to obtain a desired depth
resolution or, complementarily, aiming for temporal
superresolution exploiting compressive sensing (CS) techniques
[4]. From the CS perspective, the challenge is to obtain a
sensing matrix with the lowest possible inter-column coherence.
In combination with custom ToF array designs that allow single-
shot acquisition of raw data, spatiotemporal superresolution
becomes feasible by leveraging both temporal sparsity of the
SRF, and local spatial correlations [5].

spatiotemporal

5. Conclusion

Despite current ToF imaging techniques are the result of a
process of continuous improvement over the last two decades,
exciting research avenues remain largely unexplored and hold
further
consumption, depth resolution, and data flow.

promise for improvements in terms of power
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Annex 1: Slides on Passive ToF Imaging
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3D ToF Imaging without
emitting a single photon
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§ Passive ToF imaging: 3D reconstruction by i ions from non-
sources of illumination present in the scene, such as VLC/LiFi sources.

1 Two co-located receivers: a photodiode and the ToF camera. Ellipsoid foci are the VLC emitter and ToF sensor.

1 Using the operators defined above, we
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From Active to Passive ToF Imaging Sampling Approaches

u A bistatic geometry makes use of two sensing paths:

» Direct path; Link established between a reference photodiode and the light source. u Aim: reduction of the number of measurements by exploiting different sampling approaches.

» Indirect path: Indirect channel constituted via reflection on the targets to the ToF camera. # Uniform sampling (US): The signal is sampled at regular time shift intervals.

» Random Sampling (RS): The samples are randomly distributed over the sampling domain.

u Our passive sensing pipeline requires the use of an external ion signal for izing the

ToF camera. Sparse-ruler Sampling (SRS): Few sampling points on a sparse grid that allows measuring all integer

value between zero and the total grid size.
We exploita sparse ruler of type Wichmann W(2,5)

@ Uniform Sampling (US)
Conatdaie ®  Random Sampling (RS)

Indirectpath

@ Sparse Ruler Sampling (SRS)

Demoduiaton comtalsiA(DCS)

Bistatic Geometry Passive ToF Imaging Pipeline
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Paradigm Shift Experimental Setup
1 Introduction of VLC into the sensing game u Demonstrates a different sensing principle, which emulates a Pt e
1 Recent hift in lighting: from i lamps to light-emitting diodes (LEDs). correlationin optical domain. e B
This is a key enabler for an icati This implies the use of two parallel sensing arms rather than a single

sensing arm as in conventional methods.

§ Intelligent lighting infrastructure §  Ourmain goalis to exploit opportunity il i for
Provide multiple services, e.g., illumination and communication in indoor settings. passive sensing: ,
1 Opportunity illuminator for ToF imaging. u The position of emitter and receiverare known.
u In recent years, VLC and ToF sensing have enjoyed unprecedent independent growth. 4 Pulsed-ToF imaging is demonstrated by making use of a matched
. . - A Experimental passive ToF imagingsetup
# Idea: to merge the optical wireless communication o TR filtering method.
technology and the ToF imaging technology. -
1 References:
\/ A change of paradigm: ‘ u Passive ToF imaging by means of asynchronous transceivers.
— F. Ahmed, M. Heredia Conde and O. Loffeld, "Pseudo-Passive Indoor ToF Sensing exploiting Visible Light Communication
Optical wireless communication and ToF imaging Sources," 2021 IEEE SENSORS, 2021, pp. 1-4, DOI: 10.1109/SENSORS47087.2021.9639696.
systems cooperate instead of competing. » Experimental setup and mathematical formulation for passive ToF imaging.

F. Ahmed, M. Heredia Conde, P. Lopez. Martinez, T. Kerstein and B. Buxbaum, "Pseudo-Passive Time-of-Flight Imaging:
and 3D Sensing," in IEEE Sensors Journal, 2022, DO

p
10.1109/JSEN.2022.3208085.
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Communications and Sensing Model Preliminary Results

Communications Model Sensing Model

n  Probing signal for ToF imaging and downlinkuser: B 7(t) = (pYX(¢) * hy,05)(t) reflectedsignal.
This may arise from a random sequence, x(t),
transmited by the VLC communication source. LED
impulse response is given as hygp (t) = —e'/7/7

e&%//r

This is defined as the interaction between the S —
probing signal and the scene response function

(SRF), hytos (1) = 1'8(t = )7 = 2d/c.
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B m() = (yii, @r)(0) isthe measurement signal.
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+ Downlink communication sampling this signal yields digital samples. [ o ==~
Received optical signal in the ti in: . . =% ©
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B hyos(t) = 18 (t — At) is the line-of-sight (LoS) photodiode, yrpp (1), which yields yib, (1) = T T e T T T 3020100 102030405060 3070100 102030405060
response. (yrrn ). proct oy splggieres ey Mear SNR 48] Measr SNR (48]

90



Annex 2: Slides on One-bit ToF Imaging
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One-Bit Sensing Model (Bandlimited Functions)

m Our key idea is to replace the pixel architecture by a low-complexity, one-bit sampler.

m In conventional systems,
= Shannon-Nyquist approach is used. Sampling amounts to,
Fan: () > [ [n] = ] (uT),
® Our approach is based on
Fs:f ()~ qln]e{-1,1},

which is implementing

q[n] =sgn (u[n-1]+ f[n])
u[n]=u[n-1]+ f[n]-q[n]

Recovery | =
e,

)=

LS ale(-2)

neZ, T>0.

Valid for Bandlimited
Functions Only

One-Bit Sampling

Interpolation

Remarkably, the recovery simply follows an interpolation formula where ju denotes the oversampling

factor and ((t) is a uQ-bandlimited function
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Multipath Imaging from One-Bit Data

m SRF hy (t,¢') = ':)f‘r, (k)6 (t—¢' - e [K]).
=

Fourier
Transform

® One-Bit Measurements in Fourier Domain,

_ P =1
Qe (@) =6¢ (@) ZU T, [K]enM]

[rence.
= We can estimate ¢ by using a calibration experiment,
Qrg (mao) = G (meo), wo=2n/N,  |m| < Mo.
m We now isolate the unknown SRF using,
< () = Q) 5 e (b, o < M.
Qrp (mwo) 50

Sum-o.

BhandarikR, ICASSP 2013
Bhandari-R, EEE SPMag 2016

Algorithmic Steps

= Given
& One-bit sampls gi[n] for a given pixel -
= One-bit samples of calibrated pulke g, [n].
® Perform deconvolution in Fourier domain.
= Choose bandwidth My of pulse gy, [n].
= Compute,
Qx (misn)

5 () = 20y,
1 ()

= Solve sine-fiting problem.

min [ (mwo) = T4y T [,C]gr,w.mr

[CCEny
Solved using Matrix Pencil Metho, cf. BhandariKR (ICASSP, 2013).

Related vorks

Li & Speed (2000) « Vetterl et al. (2002) + Candes & Granda (2014)
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Annex 3: Slides on Spatiotemporal Superresolution
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CS-ToF imaging CS-ToF imaging: Sparsity-aware Signal Recovery
§ A practical Compressive Sensing (CS) scheme to increase depth and angular ranges, and to improve u Sliced OMP:
the depth resolution. 1 Apreliminary set of N measurements,
representing disjoint depth sub-domains, is
1 Construction of the sensing matrices: used to refine the signal support.
u Optimization of coherence: u This helpsto disregard large empty areas,
- Construction by columns via Gradient Combinatorial search. improve the aspect ratio of the sensing
! N ¢ matrices, and reduce the computational cost.
- Introduction of near-to-optimal shifts between rows. N N
 Explofting two-tap (PMD) architocture, 1 The depth and amplitude are recoveredin
the refined spatial domain via OMP using N,
u Sparsity-aware signal recovery: additional measurements.
¥ Temporal super-resolution schemes:
 liced owt. § The outputof this research was presented in
. IEEE SENSORS 2021.
- Greedy bilateral fusion.
- The sensing matrices used were (0,1)-binary I
¢ line of he random matrices and Scrambled Hadamard o ol
1 Currentline of research: Ensembles (SHES) with (0,1) re-scaling. = IR o ey o7 1
u Spatiotemporalsuper-resolution. - The scheme was validated by performing Bgoih T o) g0t ﬂ e < |
ie numerical simulations using Ground Truth (GT) °z 4 -2 i I} | e

- Spatial sup i ixel intensity maps.

from disparity and intensity maps of Middlebury
datasets 2003 and 2005.
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= process, by y from adjacent pixels.
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Algorithmic Steps (for ki* pixel, st iteration):

Current limitations of ToF cameras:

n
< 1 Lateral range limited by the Field of View of § StepO: Initialization of support f:9) = @, estimate of 2% = G, and residual #®:0) = 5,
N the optical system. T
Roa X NN . T (s Msamples _ (@) #ks-D
comere D ¥ Introduction of motion artifacts in unsteady n Stepl: f function [.q‘ ]’:] =G,
scenarios. o . —(ks) . (k)
u Step2: fthe T, and posterior 9 0.
Field of 3, w(ik) g
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i ot : 1 t tion j, = ary 2 .
i 4 Drasticreduction of the exposure time. * Stepd: Recoveryof the target locationmay = argmax. (g,
2z # Step5: Update of support Bs+1) = g(ks) y j . estimate of £(5) = Az,(k;,)?("") and residual
; 1 Current status: FOD = 555 — 4074,
2z : 1 Final phase of the constructionand assembling
of the prototype. Note: in the bilateral ilter weights, the I;-norm of the residual of pixelis used
r—" intensity values: 1) = |||,
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» Gradient Combinatorial approach. » Greedy bilateral fusion:
u The number of columns of the theoretical sensing matrix A is n < Tyay, being nyay the maximum number # Numerical simulations using GT from disparity and intensity maps of Middlebury dataset 2003.
of inations wi ition of ngeg lements in the m rows each column consists of.

u The n columnsare ordered in order to preventany posible coincidence of rising and falling edges, which may
lead to 1 = 1 in the real sensing matrix 4.

1 Introduction of near-to-optimal shifts
u Each of the n elements of the grid can be discretized in up to neps yielding gaypies, Which guarantees i <
1. This pushes the temporal (depth) resolution beyond the number of elements (columns) of 4o.
u Startingfrom A, we evaluate the djacent columns resulti i possible on-
grid shift in the row, and select the one which maximizes it.

1 Exploiting the PMD-based two-tap architecture.
c i illumination, we make use of the di both taps. This yieldsa
further reduction of .
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