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Abstract  Constant-time filters often approximate image filtering used in various applications to reduce 
computational complexity since the computational complexity depends on the window length of the kernel. 
This paper focuses on convolution filtering with sliding frequency transforms, one of the constant-time filters. 
Although this filter is fast and accurate, implementing a program with parallelism and locality in mind results in 
very complex and redundant code since it is based on recursive processing. Therefore, we propose a domain-specific 
language for constant-time filtering with the sliding transform. 
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1. Introduction 
  Filtering is a fundamental tool in image processing and 
computer vision; thus, speeding up the filtering itself plays an 
important role. One problem with common image filtering, such 
as Gaussian filtering, is that the computational complexity 
depends on the window length of the filter. One solution to this 
problem is a convolution filter using a sliding frequency 
transform, one of the constant-time filterings with high accuracy 
and speed. However, the sliding filtering programs are hard to 
optimize: parallelization, vectorization, and cache blocking. The 
complexity is based on the recursion processing in sliding 
filtering requires redundant code. 

This paper proposes a domain-specific language that can 
efficiently describe convolution with Sliding DFT. 
 
2. Sliding DFT 

On FIR convolution 
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where 𝑔#  is a kernel weight and 𝑅 is a window radius of the 
kernel, 𝑔# can be approximated by the discrete Fourier transform 
(DFT) and described by the following equation. 
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A computational complexity of Equation (2) is 𝑂(𝐾𝑅). For 
now, we introduce the second-order shift property [1], which is 
a relational expression involving three sequential 𝐹(, defined by 
the following equation.  
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calculated recursively in 𝑂(1). 
Convolution with sliding DFT, which uses the second-order 

shift recursively, can be described in the following equation. 
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(!) . Equation (2) can be filtered in 𝑂(𝐾) , 

which does not depend on the window radius 𝑅. This means finite 
impulse response (FIR) convolution (1) can be approximated in a 
constant-time algorithm. 
 
3. RecFilter 
  RecFilter [3] is a domain-specific language (DSL) for infinite 
impulse response (IIR) filtering. RecFilter internally uses Halide 
[2] and makes it simpler to write high-performance IIR filtering. 
RecFilter can be used for writing the code of convolution with 
Sliding DFT since sliding DFT is a recursive processing. 
 
4. Proposed Method 

Convolution with sliding DFT can filter in constant-time O(K) 
but implementing the sliding DFT program with high parallelism 
and locality results in very complex and redundant code since it 
has recursive processing. Therefore, We propose a DSL for 
convolution with sliding DFT by wrapping RecFilter. 

 

Listing. 1. proposed DSL code for Gaussian filter. 
 

Var x("x"), y("y"), c("c"); 
SlidingConv gf("gf", w, h, d); 
 
gf(x, y, c) = input(x, y, c); 
 
// algorithm part 
gf 
  .set_kernel(kernel) 
  .set_order(3) 
  .set_radius(10) 
  .set_optimizeCoeff(true) 
  .set_algorithm(DFT-5); 
  
// schedule part 
gf.cpu_auto_schedule(); 
  
gf.realize(output); 
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Listing 1 shows the proposed DSL code for Gaussian filtering. 
SlidingConv is a function body for convolution with sliding DFT. 
After specifying the input and parameters for the sliding DFT 
algorithm, scheduling can be specified. 

SlidingConv can simply and separately describe convolution 
with sliding DFT code in the algorithm and scheduling parts. 
Usually, Halide has the advantage that the algorithm parts and 
scheduling parts can be described separately; however, when 
convolution with sliding DFT is written directly in Halide, it is 
necessary to write scheduling-aware codes in the algorithm part 
due to the use of RDom in the definition of recursive processing. 
Therefore, SlidingConv fixed this problem and can separately 
describe convolution with Sliding DFT code in the algorithm and 
scheduling parts. In addition, the scheduling of the sliding DFT 
convolution can be changed on SlidingConv, and the 
parallelization and vectorization loops can be adjusted to suit each 
environment. 

 
5. Experimental Results 
  We compared the implementations of the sliding-DCT 
Gaussian filter of manually optimized for CPUs using SIMD’s 
vector arithmetic instructions with SlidingConv. Fig 1 shows the 
results of running the Gaussian filtering with 512×512 and 
2048×2048 images, varying the 𝜎 of the Gaussian filter from 3 
to 10. 
  The result of 512×512 shows that SlidingConv is more affected 
by 𝜎  than SIMD implementation. The result for 2048×2048 
shows that SlidingConv is more affected by 𝜎 than SIMD, but 
SlidingConv (DCT) is as fast or faster than SIMD up to 𝜎 = 7. 
  The reason why SlidingConv is more affected by 𝜎 than SIMD 
is that SlidingConv is parallelized by tiles, and the number of 
convolutions required to start a sliding transformation increase 
compared to SIMD. In a result, a larger 𝜎 has a greater impact 
than SIMD when the computational complexity of the 
convolution increases due to an increase in the window radius of 
convolution. 
  The reason why SlidingConv is faster than SIMD when the 
image size is increased is that when SlidingConv is parallelized 
with the tile. For small image sizes, SIMD is faster than 
SlidingConv because the increase in the number of convolutions 
required to start the sliding transform is larger than the increase 
in speed due to parallelization. However, for large image sizes, 
the opposite effect occurs, making SlidingConv faster than SIMD. 
As shown above, SlidingConv is significantly affected by 𝜎 due 
to parallelization, so it is slower than SIMD for small image sizes 
but faster than SIMD for large image sizes and medium 𝜎. The 
speed-up due to parallelization depends on CPU performance, so 
the speed-up due to parallelization of SlidingConv is expected to 
be stronger when a CPU that is more capable of parallel 
processing is used. 
 
6. Conclusion 
  We proposed a DSL, which makes it simpler to write 
convolution with sliding DFT to resolve the problem that 
implementing a program for convolution with sliding DFT with 
parallelism and locality results in very complex and redundant 
code. SlidingConv can separately describe the convolution with 
sliding DFT code in the algorithm and scheduling parts and 
simply specify and change a kernel for filtering, parameters for 
the algorithm and schedules. In addition, the execution speed is 
faster than or comparable to that of SIMD for large image sizes  

and medium 𝜎, which means that a proposed DSL has a simple 
description and sufficient high-speed processing. 
 

 
(a)    512×512  

 

 
(b) 2048×2048 

 

Fig. 1. Results of Gaussian Filter (σ) 
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