

Basic Study on Domain Specific Description of Convolution
with Sliding DFT

Yamato Kanetaka1, Yoshihiro Maeda2, Norishige Fukushima1

1 Nagoya Institute of Technology
Gokisho-cho, Showa-ku, Nagoya, Aichi 466-0061, Japan

2 Tokyo University of Science
3-1, Shinjuku 6-chome, Katsushika-ku, Tokyo 125-8585, Japan

E-mail: kntkc0de@gmail.com

Abstract Constant-time filters often approximate image filtering used in various applications to reduce
computational complexity since the computational complexity depends on the window length of the kernel.
This paper focuses on convolution filtering with sliding frequency transforms, one of the constant-time filters.
Although this filter is fast and accurate, implementing a program with parallelism and locality in mind results in
very complex and redundant code since it is based on recursive processing. Therefore, we propose a domain-specific
language for constant-time filtering with the sliding transform.

Keywords: sliding-DFT, Halide, RecFilter, DSL, sliding frequency transform

1. Introduction
 Filtering is a fundamental tool in image processing and
computer vision; thus, speeding up the filtering itself plays an
important role. One problem with common image filtering, such
as Gaussian filtering, is that the computational complexity
depends on the window length of the filter. One solution to this
problem is a convolution filter using a sliding frequency
transform, one of the constant-time filterings with high accuracy
and speed. However, the sliding filtering programs are hard to
optimize: parallelization, vectorization, and cache blocking. The
complexity is based on the recursion processing in sliding
filtering requires redundant code.

This paper proposes a domain-specific language that can
efficiently describe convolution with Sliding DFT.

2. Sliding DFT

On FIR convolution

(𝑓 ∗ 𝑔)! = ' 𝑓!"#
$

#%&$

𝑔# (1)

where 𝑔# is a kernel weight and 𝑅 is a window radius of the
kernel, 𝑔# can be approximated by the discrete Fourier transform
(DFT) and described by the following equation.

(𝑓 ∗ 𝑔)! ≃ ' '𝑓!"#
'

(%)

$

#%&$

𝐺(𝑄#
(()" ='𝐺(

'

(%)

𝐹(
(!)				(2)

where 𝐹(

(!) = ∑ 𝑓!"#$
#%&$ 𝑄#

(()" and 𝑄#
(()" = 𝑒,-(("())(#"#)).

A computational complexity of Equation (2) is 𝑂(𝐾𝑅). For
now, we introduce the second-order shift property [1], which is
a relational expression involving three sequential 𝐹(, defined by
the following equation.

𝐹(
(!&.) + 𝐹(

(!".) = 2𝐶.
(()𝐹(

(!) + 𝛥!
(() (3)

where 𝐶#
(() = cos 9/0

1
𝑘𝑛< and 𝛥!

(() = 𝑄$
(()&(𝑓!&$&. −

𝑓!"$) + 𝑄$
(()"(𝑓!"$". − 𝑓!&$) (In DFT-V). 𝐹(can be

calculated recursively in 𝑂(1).
Convolution with sliding DFT, which uses the second-order

shift recursively, can be described in the following equation.

𝑍(
(!&.) + 𝑍(

(!".) = 2𝐶.&#!
(() 𝑍(

(!) + 𝛥!
2(()𝐺(2 (4)

where 𝑍(

(!) = 𝐺(𝐹(
(!) . Equation (2) can be filtered in 𝑂(𝐾) ,

which does not depend on the window radius 𝑅. This means finite
impulse response (FIR) convolution (1) can be approximated in a
constant-time algorithm.

3. RecFilter
 RecFilter [3] is a domain-specific language (DSL) for infinite
impulse response (IIR) filtering. RecFilter internally uses Halide
[2] and makes it simpler to write high-performance IIR filtering.
RecFilter can be used for writing the code of convolution with
Sliding DFT since sliding DFT is a recursive processing.

4. Proposed Method

Convolution with sliding DFT can filter in constant-time O(K)
but implementing the sliding DFT program with high parallelism
and locality results in very complex and redundant code since it
has recursive processing. Therefore, We propose a DSL for
convolution with sliding DFT by wrapping RecFilter.

Listing. 1. proposed DSL code for Gaussian filter.

Var x("x"), y("y"), c("c");
SlidingConv gf("gf", w, h, d);

gf(x, y, c) = input(x, y, c);

// algorithm part
gf
 .set_kernel(kernel)
 .set_order(3)
 .set_radius(10)
 .set_optimizeCoeff(true)
 .set_algorithm(DFT-5);

// schedule part
gf.cpu_auto_schedule();

gf.realize(output);

2022年12月12日(月)　　　　　　　映像情報メディア学会技術報告　　　　　　ITE Technical Report Vol.46,No.41
 IST2022-51(Dec.2022)

Copyright © 2022 by ITE
37

Listing 1 shows the proposed DSL code for Gaussian filtering.
SlidingConv is a function body for convolution with sliding DFT.
After specifying the input and parameters for the sliding DFT
algorithm, scheduling can be specified.

SlidingConv can simply and separately describe convolution
with sliding DFT code in the algorithm and scheduling parts.
Usually, Halide has the advantage that the algorithm parts and
scheduling parts can be described separately; however, when
convolution with sliding DFT is written directly in Halide, it is
necessary to write scheduling-aware codes in the algorithm part
due to the use of RDom in the definition of recursive processing.
Therefore, SlidingConv fixed this problem and can separately
describe convolution with Sliding DFT code in the algorithm and
scheduling parts. In addition, the scheduling of the sliding DFT
convolution can be changed on SlidingConv, and the
parallelization and vectorization loops can be adjusted to suit each
environment.

5. Experimental Results
 We compared the implementations of the sliding-DCT
Gaussian filter of manually optimized for CPUs using SIMD’s
vector arithmetic instructions with SlidingConv. Fig 1 shows the
results of running the Gaussian filtering with 512×512 and
2048×2048 images, varying the 𝜎 of the Gaussian filter from 3
to 10.
 The result of 512×512 shows that SlidingConv is more affected
by 𝜎 than SIMD implementation. The result for 2048×2048
shows that SlidingConv is more affected by 𝜎 than SIMD, but
SlidingConv (DCT) is as fast or faster than SIMD up to 𝜎 = 7.
 The reason why SlidingConv is more affected by 𝜎 than SIMD
is that SlidingConv is parallelized by tiles, and the number of
convolutions required to start a sliding transformation increase
compared to SIMD. In a result, a larger 𝜎 has a greater impact
than SIMD when the computational complexity of the
convolution increases due to an increase in the window radius of
convolution.
 The reason why SlidingConv is faster than SIMD when the
image size is increased is that when SlidingConv is parallelized
with the tile. For small image sizes, SIMD is faster than
SlidingConv because the increase in the number of convolutions
required to start the sliding transform is larger than the increase
in speed due to parallelization. However, for large image sizes,
the opposite effect occurs, making SlidingConv faster than SIMD.
As shown above, SlidingConv is significantly affected by 𝜎 due
to parallelization, so it is slower than SIMD for small image sizes
but faster than SIMD for large image sizes and medium 𝜎. The
speed-up due to parallelization depends on CPU performance, so
the speed-up due to parallelization of SlidingConv is expected to
be stronger when a CPU that is more capable of parallel
processing is used.

6. Conclusion
 We proposed a DSL, which makes it simpler to write
convolution with sliding DFT to resolve the problem that
implementing a program for convolution with sliding DFT with
parallelism and locality results in very complex and redundant
code. SlidingConv can separately describe the convolution with
sliding DFT code in the algorithm and scheduling parts and
simply specify and change a kernel for filtering, parameters for
the algorithm and schedules. In addition, the execution speed is
faster than or comparable to that of SIMD for large image sizes

and medium 𝜎, which means that a proposed DSL has a simple
description and sufficient high-speed processing.

(a) 512×512

(b) 2048×2048

Fig. 1. Results of Gaussian Filter (σ)

Aknowledgements
This research was supported by Grants-in-Aid for Scientific
Research (21H03465, 21K17768).

References
[1] V. Kober, ”Fast algorithms for the computation of
sliding discrete sinusoidal transforms”, IEEE Trans-
actions on Signal Processing, 52, pp. 1704-1710, 2004.
[2] J. Ragan-Kelley, et al., ACM TOG, July. 2012.
[3] Chaurasia, et al., High-Performance Graphics, 2015.

	0

	0.1

	0.2

	0.3

	0.4

	0.5

	3 	4 	5 	6 	7 	8 	9 	10

ti
m

e
	[

m
s

]

σ

"SIMD	(order=3)"
"SlidingConv	(DCT-V,	order=3)"
"SlidingConv	(DFT-V,	order=3)"

	0

	2

	4

	6

	8

	10

	3 	4 	5 	6 	7 	8 	9 	10

ti
m
e
	[
m
s
]

σ

"SIMD	(order=3)"
"SlidingConv	(DCT-V,	order=3)"
"SlidingConv	(DFT-V,	order=3)"

38

