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Abstract

Over the past 10 years, most image sensor volume production
has shifted from monolithic towards 3D stacked multi-layer
processes. This has been quite a revolution, opening game-
changing opportunities in terms of device content and
capabilities. In this presentation we will step back and recall
the reasons and fundamental choices made at the time
embarking in stacked sensor design. The advantages of 3D
stacking will be examined, and the opportunities and
associated complexity of these sensors will be discussed from
a digital architect point of view. Specifically, the management
of power and the integration options and capability for on-chip
complex image signal processing. We will then have a look at
opportunities for integration in image sensors of Artificial
Intelligence, trying to scope what is reasonable, what are the
limits, and what could be relevant criteria for Al integration in
present and future image sensors.

3D stacking rationale

When moving to 3D stacking, some fundamental choices have
been made in STMicroelectronics: First, wafer level stacking
(in opposition to a die on wafer) has been chosen to cope with
large volume production. Second, hybrid bonding has been
naturally adopted for die interconnect process, as it is very
convenient with BSI process and allows fine connection pitch.
Third, top tier has been allocated only to pixels to get optimized
image quality with a minimum amount of process steps.

One of the major drivers for 3D stacking, has been to guarantee
a certain level of independence between the pixel process and
the CMOS logic process. Before 3D stacking, it was required
to develop and qualify both processes at the same time, leading
to significant trade-offs and dependencies. 3D stacking
allowed us to overcome this limitation and paved the way for
casier access to advanced CMOS node. CMOS 40nm
technology was the first process we used for the bottom tier,
which provides a very good balance between analog
requirements and digital design (power, speed, and density).
One additional advantage of 3D stacking technology is the
capability to get top die limited devices, leading to minimal
X,Y size for the imager product. Furthermore, it allows to
design optically centered devices, which is not easy with
monolithic process and leads to complex U-shape or L-shape
digital floorplans, limiting routing efficiency and affecting
performances and power consumption. With 3D stacking, the
digital shape is usually a rectangle, as depicted in Figure 1,
significantly simplifying the physical implementation with
better routing efficiency and performances. More recently, a
split of the pixel in 2-layers (implementing a part of the pixel
transistors in the second layer) emerged for shrinking further
the pixel size [1]. This comes with a cost impact: Shrinking
the pixel using an additional layer can improve the physical
dimension of the device or can improve the pixel performance
but is not saving pixel silicon area. Also, the footprint of the

array on the bottom die brings similar floorplan shapes than for
amonolithic device and inevitably leads to a bottom die limited
device, which can then only be avoided with a triple stack
solution [2], or with a 3-layer sequential bonding solution [3].
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Figure 1 Evolution of floorplan with 3D stacking.
(a) Typical monolithic image sensor floorplan,
(b) Typical 3D stacked 2-layer image sensor floorplan.

Digital node for image sensors

The choice of the CMOS node for a 3D stacked imager is not

a process race following Moore’s law and must be based on

several practical considerations and constraints:

e The device die size is (at minimum) given by the top die,
which results from the imager resolution and pixel size,
plus a couple of array-to-die-edge constraints.

e The bottom die contains a significant ratio of analog
circuitry (Power management, A2D conversion, array
control) requiring a process adapted to analog design and is
not scaling down along with smaller process geometry (or
only marginally).

e Some specific digital constraints can only be achieved with
small transistor geometries, such as high-speed interfaces,
high memory density, or low digital power consumption.

e The image sensor segment is a highly competitive market,
and the process cost is a key parameter, so process choice
must not overshoot.

The above considerations are indeed limiting the tendency to

shoot for a very dense bottom layer technology. In practice the

range of bottom die process is commonly from 40nm to 18nm

in production, and down to 14nm in publications [4].

When accessing smaller technology nodes, a natural practice is

to use faster clock speed to increase processing throughput.

However, in the context of image sensors, for which power

efficiency is a key indicator, other strategies have been proved

to be relevant: Among them analyzing benefits of architecture
parallelism is an interesting path.

The drawbacks of increasing clock speed are two folds: First it

tends to increase the ratio of high drive cells in the device

leading to a high level of leakage and impacting dynamic
consumption through an increase of buffering strength.

Second it can lead to very high local power density creating

voltage drop issues during physical implementation phase.

The first point is illustrated in Figure 2, showing leakage and

dynamic (per Mhz) consumption trends versus synthesis target

frequency for an image signal processing IP in 28nm FDSOI
process. This is design dependent, but we can see, from this
example, that doubling the frequency has led to increase the
leakage by a ratio of x13, and the dynamic (per Mhz)



consumption by a ratio x1.4.
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Figure 2 Leakage and dynamic power evolution
versus synthesis frequency

Processing parallelism is a way to avoid this, allowing to

decrease clock frequency and leading to a significant reduction

of the amount of high leakage cells and of the total number of
buffers. Of course, parallelizing has a mechanical impact on
the quantity of cells, therefore would have tendency to increase

the leakage as well, but in much lower proportion (times 2

worst case compared to times 13, in the example of Figure 2).

Listing overall benefits:

e Lowering the timing closure frequency, hence limiting
large size buffers insertion, and therefore saving dynamic
and leakage consumption.

e Possibility to mutualize intermediate results from the
parallel computation (and so to decrease the net number of
operations) saving dynamic power and leakage (if the
algorithm is designed with this prerequisite).

e Running at a lower speed makes it possible to decrease
power supply voltage, hence saving on both dynamic
power (by a factor of square the voltage reduction ratio) and
on leakage by a factor between x2and x3 of the voltage
reduction ratio).

This is an effective manner to turn available area into power

reduction with no additional cost on a 3D stacked device.

Bringing added value with on chip processing functions
Still under the hypothesis of top die limitation, there is, in many
situations, the possibility of bringing added value to the
product by integrating dedicated on-chip processing within the
area available on the bottom tier. The following cases must be
considered:

e The processing is specific to the data delivered by the
sensor, so custom processing is required, and if not done
inside the sensor, it would have to be done by an external
processor, or through a heavy SW processing in the host.

e The processing can benefit from a close coupling with the
imager focal plane to deliver a unique functionality (e.g.,
specific & efficient readout modes for always-on detectors)

e The processing done on-chip would lead to an overall lower
power bill at system level (when aggregating the
transmission energy saved and the external processing
energy)

I can mention as examples some realizations done in ST

products illustrating these cases:

e CFA transposition for supporting RGBIR - integrated in ST
product VD1940: Processing the RGB-NIR data to produce

a full resolution IR image and a Bayer CFA image.

e Low power motion detection - integrated in ST product
VD55GO0: Detecting motion and waking-up the device.

e On-chip iToF processing, as described in [5]: Capability to
compute the depth map inside the image sensor.

e Optical flow, integrated in ST product VD56G3: Optical
flow vectors provided along with the image, making
possible to compute camera ego-motion and to analyze
intra scene motions with a low-cost microprocessor.

e Always-ON detector [8] developed in collaboration
between STMicroelectronics and CEA/Leti and able to
detect a face reliably (Accuracy>95%) with a device
consumption of 6uW at 5fps.

Complexity with device scalability
Analyzing the area breakdown available in a 3D stacked image
sensor bottom die, we can see that the percentage of the area
available for digital functions is strongly linked with image
sensor resolution. In consequence, over a given product family
covering multiple resolutions, the digital content will have to
be adapted versus the resolution, and consequently lower
resolution may not integrate full features (or higher resolution
might be left quite empty). Indeed, as depicted on Figure 3 the
percentage of space for the canonical image sensor functions
(Array control, conversion, and power management) becomes
quickly predominant when lowering resolution, while space
available for digital integration decreases quickly.
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Figure 3 Area available for digital processing versus resolution in a 2-layer
top die limited image sensor.

This fact must be balanced with a couple of additional rules
defining the minimum distance between pixel array and die
edge, which clamps the achievable minimum size, but the trend
is however true. The same happens at constant resolution when
shrinking the pixel size.

So practically, starting from a given product, designing a cost
reduction by moving towards a lower resolution array, or
decreasing the pixel pitch, implies to adapt the feature list or to
select a higher density digital node (which sounds not so
relevant when designing a cost reduction, and will imply
redesigning all the analog functions). This is not true if the
floorplan of the initial product was quite empty, but in this case,



we can argue the initial product cost optimization.
Obviously, we can imagine breaking the rule for top die limited
system, but bottom die expansion over the top die size leads to
a wasted area on the top die, as shown in Figure 4.

Top die limited Bottom die limited 3 layers Top die limited

Figure 4 Area wasted on top die brought by bottom die expansion.
Interestingly, it can be shown that in some cases, a 3-layer 3D
imager could have led to a lower silicon cost than an equivalent
2-layer with same internal content. This is what is presented in
Figure 5. For information, this cost modelling considers the
technology cost for each layer and the compound yield.
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Figure 5 Device cost versus digital gate count in 3D stack

device for monolithic, 2-layer and 3-layer device
This problematic is specifically relevant when thinking about
integration of Artificial Intelligence in an image sensor. Indeed,
this is a case for which resolution may be quite low (as deep
neural networks cannot process large input resolutions), while
digital content might be quite large. This is what will be
analyzed in the next section.

Perspectives for intelligent sensors
Integration of machine learning based computer vision in
image sensors has been demonstrated with monolithic sensors,
but with significant limitations, e.g., build-in pixel complexity
[6] (preventing any future pixel shrink), hardwired features
extraction [7], or hardcoded machine learning processing [8].
Such cannot meet the performances of state-of-the-art DNN
solutions for analyzing a scene and extracting semantics or
detecting specific objects with high accuracy, and do not have
the right level of flexibility to adapt to any change of the use
case in the field. Over the past 15 years, many network
architectures have been proposed. Most of them have been
driven by the ImageNet contest [9], which is a complex
classification problem. Therefore, a large variety of the
proposed networks require high computing performance and
are targeting NPU and GPU processing and not on-the-edge
image sensor integration. Among those, what is possible to
integrate in a 3D stack sensor? An estimation of the available
space for digital functions, in a 3D stacked top die limited
image sensor is shown in Figure 6 versus image resolution and
pixel pitch. One can see that, except in the case of large
resolution and large pixels — which seems to have low chance

of success in a consumer market — a reasonable digital area
available is much below 10 mm?2.

Digital area available on bottom die
versus resolution and pixel pitch
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Figure 6 Estimation of available digital area in a 2layer 3D-

stacked imager in function of resolution and pixel pitch.
Among this budget, let’s consider that a couple of mm2 is
required for canonical image sensor digital functions (e.g.
descrambling, dark calibration, basic ISP functions, high speed
interface, device housekeeping, PLLs,..) then it remains a
budget of about 8 mm2 for hosting a potential Al inference
solution for the largest sensors, and at most a very tiny area for
low resolution and small pixel sensors. If we refer to the
representation of neural network performance versus
complexity and number of coefficients [10] reported in Figure
7, we can identify a large gap. This publication was done in
2018 but is still quite valid from area and parameter size
considerations. The size of the bubbles represents the number
of network parameters. Only a very few network models are
below 5M parameters - 40Mbits for 8bit per parameter- which
represents approximately a budget of 8mm2 by themselves in
a 28nm process. Such networks are surrounded with the red
dashed line on the graph on Figure 7. Even considering recent
work from the TinyML community, most computer vision
networks designed for on-the-edge processing are in the 0.5-
5M parameters range which represents approximatively 1 to 8
mm? in 28nm process. And this is only considering network
parameters storage, and not even considering memory
requirements for activation values (which by thumb rule are at
least 2 to 4 times the number of parameters storage), nor
considering area for Al accelerator engine.
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Figure 7 Classification accuracy versus Operation[G-Flops]
and parameters [MB] from [10]
Red dashed line are networks <5M parameters.
Blue dotted line area <15M parameters

As reference point, an image sensor embedding a flexible Al



inference engine and containing 9MB internal memory has
been published [11]. This was achieved thanks to a quite large
resolution (12.3Mpix), a large pixel (1.55um), an advanced
technology node (22nm) and at the expense of a significant
bottom die limitation: Bottom die is more than 2 times larger
than the imager array. Incidentally, we could compute that
partitioning this device as 3-layer top die limited, still with a
22nm technology, would have significantly increased the
available area for digital integration, while not impacting much
the product cost. Reporting this on Figure 7, we can see that
this would extend the possible supported networks range to the
region surrounded with blue dotted line. In this work, the Al
integration cost is high, and it might be difficult to justify the
advantage versus using an external processor. Running Al in a
sensor must not aim at competing with external processor:
Objectives and constraints are different, and it is paramount to
identify the rationale and advantages for embedding Al on the
sensor. We can propose the below criteria:
e Tangible benefits of a close coupling between the focal
plane and the network processing (specific readout modes)
o Capability to obtain a lower power envelop at system level
with internal processing (saving in data transport).
o Stringent privacy requirements strictly preventing to send
the image out.
e Specific latency requirements.
e Functionality fully embeddable in the limited area available
in the bottom die of a 2-layer sensor (at no extra cost)
e Power consumption is maintained in an envelope
compatible with image quality constraints.
These are typically criteria having high importance in battery
powered always-On systems (power), consumer robotics
(latency, privacy and cost), PC presence monitoring (size,
privacy, and cost), or AR/VR sensors (size, power, cost).
However, an optimized integration seems only possible
through a complete vertical analysis: Rationale for integration,
specification of the class of applicative use cases to support
(e.g. multi-object detection, classification, segmentation,..),
definition of the degree of on-chip flexibility required (max
number of parameters, quantization, type of layers supported,
network architectures supported,..), but also development of
tailored neural network adapted to the target use cases, and
specification of adapted hardware acceleration engine to
operate the network within target area and power constraints.
Conclusion
3D stacking has opened opportunities for digital integration,
improving device power consumption and making possible
complex processing and analysis functions within an image
sensor. Al solutions are of another complexity scale and bring
integration challenge for a 2-layer 3D stacked top die limited
device, as the space available on the bottom die depends on
pixel pitch and imager resolution. Large image sensors can host
small generic Al networks, running in highly subsampled
mode. Small image sensors can host only ultra optimized
micro-Al networks or must accept extra area cost due to bottom
die expansion. Very aggressive digital technology is not
helping much, as ratio of analog on the bottom die is usually
significant for small imagers. The generalization of 3-layer
stacking will facilitate integration, enabling more on-chip

memory, but cost impact and flexibility might be questionable
versus using an external Al processor. Identifying the benefit
for integration in the sensor is key, and we can quote specific
cases for which Al integration is bringing advantages and
differentiation. However, efforts for vertical optimization are
mandatory, from the scoping of application use case through
the network architecture definition and down to the design of
the hardware acceleration engine.
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