
Histogram-less direct time-of-flight imaging based
on a machine learning processor on FPGA

Tommaso Milanese∗, Jiuxuan Zhao∗, Brent Hearn†, Edoardo Charbon∗
∗AQUA laboratory, École Polytechnique Fédérale de Lausanne, Neuchâtel

{tommaso.milanese, jiuxuan.zhao, edoardo.charbon}@epfl.ch
†Imaging division, STMicroelectronics, Edinburgh, U.K.

{brent.hearn}@st.com

Abstract—The investigation of a novel architecture for direct
time-of-flight (TOF) SPAD based imaging systems is presented.
In the proposed architecture, a pulsed laser source illuminates
a scene and the reflected light is captured by a SPAD, which
detects photons and converts them to a digital pulse. Like in time-
correlated single-photon counting (TCSPC), for each detected
photon a timestamp is generated, however, unlike TCSPC, it is
fed to an machine-learning processor (MLP) that was trained to
recognize SPAD responses in direct TOF. The MLP generates the
distance to the target directly, taking into account potential non-
idealities in timestamp generation and processing. Finally, the
proposed architecture was demonstrated in practical scenes and
its performance reported using standard LiDAR characterization
methods.

I. INTRODUCTION

SPADs are the sensor of choice in many direct TOF and
LiDAR systems, thanks to their compactness and picosecond
timing resolution, which enables millimetric precision. In TC-
SPC, timestamps are generated whenever a photon is detected
and organized in a histogram. A histogram approaches the
true response of the SPAD upon for a very large – ideally
infinite – number of detected photons. In practice, an estimate
of the TOF is extracted from the histogram after a finite
time and thus its precision is also limited. In addition, due to
dark noise and background illumination, a typical histogram
contains large data, much of it not useful for computing TOF.
Hence, the memory allocation for a histogram is generally
overestimated and thus inefficient [1], [2]. Indeed, the memory
scales exponentially with respect to full scale range (FSR) and
hardware timing precision and linearly with the number of
depth-dots, leading to a large, possibly on-chip memory [3],
[4]. To address this issue, partial histograms have been devised
[5]. This approach however, in its simplest embodiment, may
prevent the detection of multiple targets at separate depths.
To address this shortcoming, more complex partial histograms
are needed, along with complex tracking algorithms. An
alternative to direct TOF, is the use of indirect TOF and
frequency modulated continuous wave (FMCW) techniques,
however, these techniques perform averaging at various levels
of sophistication, which in effect prevents multiple depth
detection as well. In this paper, we propose to use machine
learning to process all photon timestamps directly, as soon as
they are generated by a time-to-digital converter (TDC) driven
by the SPAD image sensor. The objective is the elimination

of the histograms needed in a direct TOF configuration, as
shown in Fig.1. This approach provides the same advantages

Time

Cycle 0

0

Cycle 1

1

Cycle 2

2

Counts

Cycle N

N

...

t0

2 1 0 1 1 2 4 6 4 3 2 1 1 0 1 0

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t15

t8 t5 t6 t7...

TCSPC memory content

Event memory content

To machine learning 
processor

To DSP

Figure 1. Standard TCSPC and proposed event-processing.

of direct TOF with full histograms, but with much lower
requirements in terms of memory and processing power. At
the same time, non-idealities associated with the generation
and processing of timestamps are intrinsically accounted for.
Moreover, the machine-learning processor (MLP) can also
be reconfigured to other tasks at a higher level, such as
shape and object recognition. The novel machine learning
processor was optimized for the long short-term memory
(LSTM) execution. We show how to implement the LSTM
efficiently in a commercial FPGA, so as to integrate it in the
SPAD image sensor in the near future. In the current prototype,
photon-detection is performed by a CMOS SPAD, whose raw
signals are routed to the FPGA implementing an array of
on-demand TDCs, which are then passed on to the LSTM
accelerator, as shown in the remainder of the paper.

II. SYSTEM ARCHITECTURE

The general architecture is depicted in Fig.2. The SPAD
signal is timestamped by the TDC and the timing data is
saved into a 512 × 32b event memory. The host controls
the system by means of a state machine, sending a start
signal through the Opal Kelly C++ interface and waiting
the end of the acquisition and data processing. The LSTM
accelerator starts the processing when the event memory is
filled, otherwise it stays in sleep mode, reducing the processing
power consumption. When the depth retrieval ends the system
sends a signal to the host and is ready to get a new depth-dot.



System 
FSM

Time-to-
Digital 

converter

USB3 host 
communication

Long Short-
Term Memory 

accelerator
SPAD IC receiverSPAD IC receiver SPAD_IN

to host

Figure 2. System architecture.

A. Time-to-Digital converter

The TDC is based on a tapped delay-line (TDL) latched
at 400MHz. A chain of Carry4 modules is instantiated in
adjacent slices, following the place&route (PnR) tool provided
by Xilinx for the ripple carry additions. The thermometer
output of the TDL is sampled twice, first by a flip-flop (FF)
in the same logic slice as the Carry4 and then by another FF
placed by the PnR tool, so as to decrease the probability of
metastability in the thermometer code.

Time-to-Digital ConverterTime-to-Digital Converter

Delayline + FFsDelayline + FFs

Carry4Carry4 Carry4Carry4 Carry4Carry4···

FFFFFF FFFFFF FFFFFF

FFFFFF FFFFFF FFFFFF

Thermometer-to-Binary encoderThermometer-to-Binary encoder

CDC bufferCDC buffer

SPAD_IN

...SAMPLE_CLK

CLK

TDC_DATA

CounterCounterCounter CNT_RST

...

Figure 3. TDC block diagram. Two synchronized clock domains are used
operating at 100 and 400MHz.

A pipelined thermometer-to-binary encoder (T2B) converts
the thermometer to binary code at 400MHz and passes the
data to a clock domain crossing synchronizer, reducing the
data rate from the TDL sampling clock to the 100MHz system
clock. At the end of the signal flow the data is written in the
event memory at system clock speed.

B. LSTM accelerator

The LSTM is a recurrent neural network (RNN), a par-
ticular type of artificial neural network (ANN) [6]. Since its
conception, this processing layer has been used extensively
for the processing of time series data, for instance ECG signal
classification [7] and speech recognition [8]. The time series

in consideration for SPAD-based D-TOF is the raw timestamp
data stream, the same data that is commonly organized in a
histogram for peak finding. The governing equations for this
network are stated as:

ft = σ(Wxfxt +Whfht−1 + bf ) (1)
it = σ(Wxixt +Whiht−1 + bi) (2)
c̃t = tanh(Wxcxt +Whcht−1 + bc) (3)
ot = σ(Wxoxt +Whoht−1 + bo) (4)
ct = ft ⊙ ct−1 + it ⊙ c̃t (5)
ht = ot ⊙ tanh(ct) (6)

The bold quantities are matrices and the others are vectors. ⊙
represents the element-wise multiplication between 2 vectors,
σ(·) represents the element-wise sigmoid activation for all the
vector elements and tanh(·) is the element-wise hyperbolic
tangent activation. After the LSTM layer a final fully con-
nected layer (FCN) is used to transform the final hidden state
vector into a regression value, that for this application is a
number ranging from 0 to 1 representing the phase of the
backscattered light pulse with respect to the laser emitter. This
number is then multiplied by the FSR to extract the distance in
post-processing. Eqs.1-6 embed matrix-vector multiplications,
element-wise additions and multiplications and element-wise
non-linear activations, all completely parallelizable operations.
The design of this accelerator is based on a row-stationary
data flow for the matrix-vector multiplication: each processing
elements (PEs) compute one row of the multiplication, acting
all in parallel. For the LSTM algorithm execution the resources
needed are multipliers, adders, and non-linear activation LUTs,
which form the basis of the PE design, Fig.4; muxes are added
before the three operators to be able to perform element-
wise vector operations. Referring to Eqs.1-6 ft, it, c̃t, ot
and ct are stored in the activation registers, ht in the hidden
state memory, all W and b in the weight memory and xt

in the separate event-memory (not shown in the figure). By
reprogramming the PEs scalar and vector calculations can
be performed in parallel, lowering the processing time per
timestamp. The memories in the design have been laid out
in such a way that each PE has its own memory space, both
in the weight memory and in the activation registers needed
for the LSTM execution. A program counter dictates the
state machine execution and, exploiting a masking operation,
it controls the address of the weight memory. The weight
memory for this design is a 42×128 bit block RAM Xilinx IP,
but in the future it will be substituted by a single port SRAM
for solid state implementations. The activation registers are
implemented with logic, and they are subdivided in two sub-
banks per PE in order to decrease the algorithm execution
time. The total memory allocated for these registers is 80×28
bits, sub-divided in 10× 28 bits for each of the eight PEs.

III. SYSTEM TRAINING AND QUANTIZATION

The LSTM based network has been trained off-line after
the creation of a dataset from a MATLAB simulator [9]. The



Figure 4. (Left) LSTM accelerator block diagram. (Right) Processing element RTL schematic.

LiDAR signal return is modeled as a Gaussian distribution :

P (t; d) = R(d) exp

{
(t− 2d

c )
2

σ

}
, (7)

where R(d) represents a constant embedding the physical
scene/SPAD parameters, d is the target distance, σ is the
parameter related to system jitter and c is the speed of light. A
background light of 1klux was chosen and a reference white
target with 97% reflectivity has been used. The background is
assumed to be a uniformly distributed noise source over the
laser period with Poisson statistics, where the λ parameter
corresponds to the background lux intensity. A gamut of
distances ranging from 0 to 15 m with a step of 60 µm was
selected and histograms of these distances were constructed
and sampled, to obtain 10k time-series per each distance point,
containing 512 timestamp values. Fig.5 shows an example of
the training data, for the corresponding distance of 8.89 m.
The network was implemented in PyTorch and then trained in
Google Colab using mean squared error (MSE) loss function:

MSE(yp,i, yt) =
1

Ns

Ns∑
i=1

(yp,i − yt)
2, (8)

with Ns being the number of timestamps processed by the
network (512 in our case), yp,i the predicted value of the
network for every time step and yt the target ground truth.
Note that the ground truth does not change through time, since
the whole time series belongs to a single distance distribution,
which we want to predict. Adam optimizer with a 0.001
learning rate was used, setting a total of 50 epochs to allow
training convergence and input time series have been divided
in batches of 64. After training, the network weights were
quantized in fixed point arithmetic using simple truncation,
in a Q6.10 format. After quantization the weights have been
loaded into the weight memory as a memory initialization
file for practical reasons, even if a simple DMA has been
implemented to allow weight memory reconfigurability on-

the-fly for solid state implementations.

0 100 200 300 400 500

Series [1]

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
o
rm

a
li

ze
d

 t
im

es
ta

m
p

 [
1
]

Figure 5. Example of a simulated time series used for the network training.
Time values have been scaled with respect to the maximum range. In this
example the distance label is 8.89 m (scaled to 0.593).

IV. RANGING RESULTS

The system-level ranging performance of a single point
SPAD sensor has been characterized. The scratchpad buffer
processed by the accelerator was loaded with simulated data
coming from different probability distributions for different
distances, ranging from 0.05 m to 15 m with a step of 60 µm.
To simulate a real-life scenario, a scanning confocal setup
was built similar to [10] and a statistics of 10,000 points
have been acquired for 12 different distances. The field-of-
view (FoV) was covered by a generic target consisting of a
white paper. The ground truth was acquired with a commercial
rangefinder placed below the scanning mirrors, while parallax
and offset errors were removed in post-processing. Results for
the ranging measurements are shown in Fig.6.

V. 3D IMAGING RESULTS

Using the same optical setup, a 3D image was acquired. The
timestamps generated by the TDCs were fed to the MLP and
a standard histogram-based center-of-mass (CoM) algorithm.
Since the system is event-based, no integration time is set,



Figure 6. (Left) Simulated data. Input time series step size is 60µm. (Right) Ranging measurements. For each distance 10,0000 points are acquired and
organized in a histogram, to characterize the ranging distribution of the implemented LiDAR architecture.

meaning that the acquisition proceeds when the single point
has been acquired and processed. To achieve a fair comparison,
for each point, we used the same scratchpad buffer where
timestamps had been stored for both MLP and CoM. As
expected, CoM showed less variability, while the proposed
architecture can clearly distinguish the different objects in the
scene. The results are shown in Fig.7.

BS

Laser

Lens

Galvanometers

Amp

Beam Dump Laser

Lens

BPF

BS

2-Axis
Galvanometers Object

FPGA

to PC

SPAD

SPAD

20 40 60 80 100 120

X

20

40

60

80

100

120

Y

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Distance (m)

20 40 60 80 100 120

X

20

40

60

80

100

120

Y

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

Distance (m)

Figure 7. 3D imaging results. Top left: RGB intensity image of the target.
Top right: Optical setup. Bottom left: LSTM accelerator. Bottom right: CoM.

VI. CONCLUSIONS

We presented a new histogram-less Direct Time-of-Flight
architecture based on timing event processing through a ma-
chine learning processor. The processor enables individual
photon timestamp processing and it is optimized for LSTM
algorithm execution, with the possibility of repurposing it for

other high-speed event-based applications requiring machine
learning.

REFERENCES

[1] A. R. Ximenes, P. Padmanabhan, M.-J. Lee, Y. Yamashita, D.-N. Yaung,
and E. Charbon, “A 256× 256 45/65nm 3d-stacked spad-based direct
tof image sensor for lidar applications with optical polar modulation
for up to 18.6 db interference suppression,” in 2018 IEEE International
Solid-State Circuits Conference-(ISSCC). IEEE, 2018, pp. 96–98.

[2] P. Padmanabhan, C. Zhang, M. Cazzaniga, B. Efe, A. R. Ximenes, M.-J.
Lee, and E. Charbon, “7.4 a 256× 128 3d-stacked (45nm) spad flash
lidar with 7-level coincidence detection and progressive gating for 100m
range and 10klux background light,” in 2021 IEEE International Solid-
State Circuits Conference (ISSCC), vol. 64. IEEE, 2021, pp. 111–113.

[3] I. Gyongy, N. A. Dutton, and R. K. Henderson, “Direct time-of-flight
single-photon imaging,” IEEE Transactions on Electron Devices, vol. 69,
no. 6, pp. 2794–2805, 2021.

[4] G. Chen, C. Wiede, and R. Kokozinski, “Data processing approaches
on spad-based d-tof lidar systems: A review,” IEEE Sensors Journal,
vol. 21, no. 5, pp. 5656–5667, 2020.

[5] C. Zhang, S. Lindner, I. M. Antolović, J. M. Pavia, M. Wolf, and
E. Charbon, “A 30-frames/s, 252 × 144 spad flash lidar with 1728
dual-clock 48.8-ps tdcs, and pixel-wise integrated histogramming,” IEEE
Journal of Solid-State Circuits, vol. 54, no. 4, pp. 1137–1151, 2018.

[6] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[7] S. A. Mirsalari, N. Nazari, S. A. Ansarmohammadi, S. Sinaei, M. E.
Salehi, and M. Daneshtalab, “Elc-ecg: Efficient lstm cell for ecg clas-
sification based on quantized architecture,” in 2021 IEEE International
Symposium on Circuits and Systems (ISCAS). IEEE, 2021, pp. 1–5.

[8] D. Kadetotad, S. Yin, V. Berisha, C. Chakrabarti, and J.-s. Seo, “An 8.93
tops/w lstm recurrent neural network accelerator featuring hierarchical
coarse-grain sparsity for on-device speech recognition,” IEEE Journal
of Solid-State Circuits, vol. 55, no. 7, pp. 1877–1887, 2020.

[9] A. Aßmann, B. Stewart, and A. M. Wallace, “Deep learning for
lidar waveforms with multiple returns,” in 2020 28th European Signal
Processing Conference (EUSIPCO). IEEE, 2021, pp. 1571–1575.

[10] J. Zhao, T. Milanese, F. Gramuglia, P. Keshavarzian, S. S. Tan, M. Tng,
L. Lim, V. Dhulla, E. Quek, M.-J. Lee et al., “On analog silicon pho-
tomultipliers in standard 55-nm bcd technology for lidar applications,”
IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 5,
pp. 1–10, 2022.


	Introduction
	System architecture
	Time-to-Digital converter
	LSTM accelerator

	System training and quantization
	Ranging results
	3D imaging results
	Conclusions
	References

