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Abstract—High-speed 3D time-of-flight (ToF) imaging 

has the potential to offer improved situational awareness 

in robotics and automotive applications as well as 

assisting photogrammetry-based high-speed scientific 

imaging such as material testing. This paper uses a 

CMOS SPAD dToF sensor for depth and intensity 

imaging at up to 10kFPS. Depth maps are upscaled from 

a resolution of 64×32 to 256×128 using a recently 

proposed video super-resolution techniques tailored to 

SPADs. We also present preliminary results from the 

application of the sensor to human activity recognition 

(HAR). 

I. INTRODUCTION 

The use of SPAD-based 3D depth sensors has become 

widespread in the last few years, with the sensors finding 

applications in smartphones, robotics, and even home 

appliances [1]. SPADs have also become a key 

technology in LIDAR for autonomous systems [2]. By 

integrating SPAD arrays with processing logic, solid-

state, all-digital receivers can be implemented that 

provide accurate depth maps even in high ambient 

conditions. However, array sizes tend to be limited, 

leading to a relatively low angular resolution when 

imaging in a flash modality. Instead of using flood 

illumination, some SPAD modules project a dot array 

(using a diffractive optical element [3]) which increases 

the SNR in the spots and thus the range but again results 

in sparse spatial sampling. There is therefore an interest 

in using post-processing to improve the lateral resolution 

of depth maps, as well as to provide scene interpretation, 

especially for long-range targets subject to significant 

pixelation. 

II. SENSOR ARCHITECTURE 

We used a high-speed SPAD dToF sensor in our study 

[4], capable of running at frame rates in the 10 kFPS 

range (>100 kFPS for on-chip depth computation). The 

sensor, implemented in STMicroelectronics’ 40nm 

technology, comprises 64×32 pixels, each pixel 

consisting of a 4×4 array of SPADs and processing logic. 

A time-gated, multi-event histogramming TDC is 

integrated into each pixel, generating an 8-bin histogram 

with a resolution down to ~250 ps [4]. The time gate 

functionality enables the histogram to be shifted in time 

to extend the range of the sensor. Three main 

mechanisms are available for setting the time gate 

positions of individual pixels: (1) internal control that 

automatically tracks the signal peak via in-pixel 

background estimation and peak detection, (2) internal 

control that continually cycles across up to 128-time gate 

positions, and (3) external control, potentially based on 

guidance from an additional sensor [5] (such as a stereo 

vision system). On-chip (column parallel) depth 

computation and selective readout options are available 

to provide further data compression. In addition to time-

resolved imaging, the sensor offers a 128×128 photon 

counting (intensity) imaging modality. Figure 1 shows a 

portable camera setup consisting of a custom PCB 

(housing the SPAD and an FPGA module), a compact 

850 nm VCSEL illumination module, and a laser range 

finder for reference depth measurements. The camera is 

connected to a laptop which controls and powers the 

camera; a Matlab software interface provides real-time 

visualisation of the captured data. For post-processing, 

we used a desktop computer (HP EliteDesk 800 G5 

TWR) with an RTX2070 GPU. 

 III. HIGH-SPEED, SUPER-RESOLVED DATA 

Figure 2 depicts examples captured at 200 FPS in the 

tracking modality (mode 1 above) of the sensor. The 

scene is of two people, one running and the other 

waving, in an open space with objects scattered around. 

The figure shows depth data obtained by applying 

centre-of-mass peak extraction on the histogram frame 

(panel a) as well as the upscaled version (from 64×32 to 

256×128) of this data following neural network super-

resolution processing (b) [6], which is seen to lead to an 

improvement in the profiles of the people. Unlike 

commonly used, intensity-guided approaches [7], the 

upscaling is based entirely on the depth data here. 

Processing speeds above 30 FPS are achieved. Figure 3 

shows data acquired indoors at 10 kFPS of a balloon 

being burst. Three sequences are given: intensity frames 

(3a), depth frames (3b), and super-resolved depth data 

(3c). The rupture of the balloon is captured in high 

temporal detail, demonstrating the potential of SPAD 

cameras in specialised high-speed imaging applications 

[8], especially where high sensitivity is required, as 

offered by state-of-the-art SPADs [9]



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. a) Picture of the camera setup. A 25 mm/f1.4 objective is used in front of the sensor, giving a 20×5 degree field-of-view 

(FOV), together with a 10 nm ambient filter. Illumination is provided by a compact 850 nm VCSEL source with 10 ns pulse width 

and 60 W peak optical power triggered at 1.2 MHz. b) The FOV of the camera. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Selected frames from data captured in tracking mode at 200 FPS with 8 ns bin size and 16 time gate positions (giving 

81.6m of unambiguous range) a) depth maps obtained by centre-of-mass processing of histogram frames b) corresponding super-

resolution depth maps. Only pixels which are detecting surfaces in the 20-50 m range are plotted in panel (a).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Selected frames from data sequences captured at 10 kFPS of a balloon being burst a) 128×128 photon counting data b) 

64×32 depth data derived from histogram frames c) the data in panel b upscaled to 128×256 after super-resolution processing. Note 

that the photon counting, and depth sequences were captured separately. 
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     IV. HUMAN ACTIVITY RECOGNITION 

Human activity recognition (HAR) has gained 

importance in computer vision due to its applications in 

video surveillance, health care services, human-

computer interaction, and autonomous driving [10]. 

Using just depth information for HAR has become a 

popular research topic due to the preservation of privacy 

and fast speed compared with other methods (e.g., using 

3D skeletons) [11]. Furthermore, depth-based detection 

has the potential to work even when there is no colour 

contrast between the person and the background (for 

example when camouflage is used [12]). However, one 

of the key challenges is to overcome the low transverse 

resolution of depth maps when imaging from a distance. 

Recurrent neural networks (RNNs) are a very useful type 

of network for sequential data. In particular, 

convolutional long-short-term memory (Conv-LSTM) 

layers are key to learning spatio-temporal features from 

data [13]. In [11], an RNN based on conv-LSTM layers 

is used to perform HAR on high-resolution, indoor, and 

short-range depth data. In this work, we use a similar 

network to perform HAR on data from a SPAD dToF 

sensor involving longer-range, outdoor sequences, 

where SNR is typically lower, and objects can become 

heavily pixelated.  

The method is designed to perform HAR on sequences 

of any length. First, a 64×32 depth sequence is captured 

and passed through a U-net-like network to localise 

people [14]. Next, the depth sequence is cropped 

spatially around each person in frames of 16×32 pixels 

and then resized to 32×32 pixels. Finally, the cropped 

sequence is analysed by the RNN network and outputs 

an activity from the following set: remaining idle, 

walking, running, crouching down, standing up, waving, 

or jumping. Figure 4 shows a diagram summarising the 

steps involved in this approach to perform HAR. 

Unreal Engine [15] was used to generate a large and 

diverse training dataset, shared for both human 

localisation and HAR networks. Ground truth 

information for a variety of sensors can be extracted 

from virtual environments. In this work, depth, intensity, 

and segmentation frames of size 512×128 are recorded 

and used as inputs in an optical model to simulate data 

from a SPAD dToF sensor. To match the sensor 

architecture described here, the model assumes 4×4 

SPAD macropixels, a pixel resolution of 64×32 (with an 

aspect ratio of 4:1), and in-pixel histogramming.  

Figure 4 shows the confusion matrix of all activities 

considered here, indicating % of samples predicted in a 

given class in the test dataset (data unseen by the model). 

The overall accuracy for the test dataset is 91.5%. 

Activities corresponding to standing up, walking, 

running, jumping, and waving are detected with a recall 

higher than 90% while crouching down, and remaining 

idle has lower recall values (though a precision of 

>93%). False positives can occur due to similarities 

between two actions (such as crouching down slightly 

before jumping) or failure to localise the person 

accurately (in some cases due to distracting features in 

the background). The network is able to perform HAR 

from a sequence with a latency of 150 ms. 

Activity sequences were captured using the SPAD dToF 

sensor at 50 FPS to generate a test dataset from real data. 

Figure 6 compares a sequence of a person walking 

captured by the real dToF sensor (Fig. 6a) with 

corresponding synthetic SPAD data (Fig. 6b). The visual 

similarity between the two sequences appears to justify 

the use of synthetic SPAD data for training. Indeed, 

preliminary results suggest similar performance on the 

real dataset to the results on the synthetic dataset, HAR 

predicting activities such as running, walking, and 

standing up with high sensitivity, whilst crouching down 

and remaining idle have reduced recall values (but high 

precision). 

 

 

 

 

 

 

 

 

 

Figure 4: Confusion matrix of activities representing % of samples predicted in each class. Example: 1.6% of jumping data is 

confused with crouching down. Each class has approximately 200 samples.



                        V. CONCLUSIONS 

We demonstrated the application of a dToF SPAD 

sensor in high-speed imaging and showcased the use of 

deep learning models, trained on synthetic SPAD data, 

to overcome the limited transverse resolution and 

provide upscaled depth maps or human activity 

recognition (HAR). Future work will attempt to improve 

segmentation and extend the method to multiple people 

within the field of view. 
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Figure 5. Human activity recognition workflow 

diagram.  A low-resolution depth sequence is 

captured and segmented via a human segmentation 

network (similar to U-net).  Based on the 

localisation of the human, the sequence is cropped 

accordingly. The cropped sequence is passed 

through a second network evaluating the activity 

performed (e.g. running). 

 

 

 
Figure 6. Comparison of selected frames from a sequence of a person walking captured with a) a real SPAD camera (50 

FPS, mean signal-to-background photons ratio (SBR) of 0.17 and 716 average signal photons for the person in the first 

frame) b) a virtual SPAD camera (model-generated data, mean SBR 0.19 and 42 average photons). 
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