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1 Introduction 

Consumer applications such as AR/VR require global shutter image sensors due to image artifact 

reduction and due to their capability to sync with a pulsed illuminator. Other key requirements are low 

system power, (achieved through high QE at NIR and sensor low power operation) and miniaturized 

silicon size. Furthermore, HDR operation is especially required for world facing cameras.  

2 Sensor architecture 

To satisfy the needs of consumer applications, we designed a 0.5MP image sensor with 2.79um 

voltage domain GS pixels with a packaged sensor footprint of only 2.3mm x 2.8mm, with architecture 

depicted in Fig 1. To meet the challenging requirements of footprint and power, we made extensive 

use of digital-friendly readout circuits starting with the ramp ADC, which contains minimal analog 

circuitry. Given the scaled technology node (40nm) of the logic layer, the power of the readout scaled 

dramatically compared to our previous designs in older technology node. Certain building blocks 

which were the most power hungry in our previous designs (e.g. ADC counter) experienced an order 

of magnitude of power consumption improvement. In addition, advanced power down techniques 

were used for optimizing current consumption by turning on specific blocks only when needed. The 

above techniques allowed for an allow ultra-low-power operation of the sensor (e.g. 18.5mW at 10bit, 

30fps, 0.5MP). 

To avoid potential column FPN issues, we decided to keep the ADC pitch same as the pixel pitch. 

This posed a challenge in the row driver design to keep the sensor footprint within specifications. 

Improvements in the row driver architecture and the use of 7 metal layers (made possible by the 

stacked technology) allowed achieving an exceptionally narrow row driver width of only 40um. The 

row driver was split in 2 parts (left and right of array) to half its width. The improvements in 

architecture, layout, and the usage of scaled technology node allowed for a sensor footprint which is 

mostly dominated by the pixel array rather than readout silicon.  

3 HDR operation 

The HDR technique validated in this sensor is shown in Fig 2. It uses charge-overflow-on-FD 

technique, with critical improvements over SOA. Overflow operation is done on FD, at a fraction (T1) 

of low-light exposure time (T0), with DR extended by T0/T1 ratio, with T0 exploiting the entire full well 

of PD and T1 exploiting the entire full well of FD. The technique makes use of the timing diagram of 

Fig 2 and works as follows. A) Long exposure T0 starts when TX toggles low. B) TX toggles high to 

a mid-level. This facilitates charge overflow from PD to FD (hence to reset) in case of medium or high 

light. C) Short exposure T1 starts when reset switch is turned off. At this point, any overflowing charge 

is collected on FD node. Since T1 is much shorter than T0 (e.g. 15x shorter), FD leakage affecting 

T1 and dark current affecting T0 are negligible. D) T1 exposure ends when TX toggles back to the 
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lowest level. T1 exposure is stored via S1 and S2 in C2. E) Finally, T0 exposure ends when TX 

toggles high. T0 signal is then stored on C1 via the S1 switch.  

Despite storing 2 signal levels in the 2 in-pixel capacitors, CDS is still provided for the low light signal 

and DDS is provided for high light signal, as follows. Fig 3 shows 3 cases of light conditions (low, 

medium and high light). In case of low light condition, no overflow occurs. Therefore, T1 exposure 

stored on C2 is the correlated reset level for long exposure T0, allowing CDS hence low noise (~5e-

) and low FPN (~3e-). In case of medium light level, overflow starts happening just after T1 starts (Fig 

3, middle plot). To reconstruct the HDR image both CDS (C2-C1 signals) and DDS (C2 signal – dark 

reference) are needed during mid light. The dark reference to allow for DDS is achieved during row 

readout, by accessing the reset level of the pixel after reading the C2 and C1 signals. In case of high 

light (Fig 3, right plot) T0 exposure signal starts overflowing before T1 starts. This means that in case 

of high light, only T1 signal is used for the HDR reconstruction. Therefore DDS is used, CDS is 

discarded.  

With the technique above, only 2 in-pixel capacitors are necessary for the 4 signals needed for HDR 

(low light + reset, high light + reset), as compared to the 4 caps needed by e.g. [2]. This method 

employing only 2 capacitors for 4 signals can be used with many other HDR techniques, including 

conventional LOFIC, dual exposure, etc. Compared to alternative HDR techniques, the proposed 

technique doesn’t need FPN calibration, and pipeline readout is possible, improving low light 

performance. Fig 4 shows ~90dB DR with ~27dB at dip point. 

4 Event detection mode 

The sensor includes an event detection mode for low power operation. As shown in Fig 5, the sensor 

splits the pixel array into a programmable number of tiles composed of binned and/or subsampled 

pixels and runs at 1fps with low power (<3mW). A reconfigurable on-chip algorithm processes the 

variation of signal intensity in each tile and decides if an interesting event has happened. If yes, the 

sensor switches to a user-defined operation mode (e.g. 120fps, 10bit). This mode is quite useful for 

sparing system power in a multitude of applications including computing, doorbells, AR/VR, etc.  

5 Conclusion 

With a 2.3mm x 2.8mm packaged size (Fig. 6), the presented sensor is one of the smallest GS 

sensors ever reported. Despite its size, it packs 0.5MP, Mipi interface, ultra-low power operation, 

smart event detection modes and proves single shot HDR concept with pipeline operation. The 

specialty of the proposed HDR technique is that it reuses the same pixel storage capacitor for both 

reset level of low light condition and signal level of high light condition. Combined with high QE 

(~92%@vis, ~38%@940nm) it well compares against great works from the past [1],[2] and it is an 

ideal candidate for consumer AR/VR devices.   
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Fig. 1. CIS silicon (left) stacked on top of logic silicon (right) via hybrid bonding interconnect 
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Fig. 2. Voltage domain GS pixel and HDR timing. C2 stores overflow signal (at high light) or reset signal (at low 

light). Reset level of overflow is read during row readout time. Only 2 capacitors are then needed to store reset 

low light, low light signal, overflow signal and reset of overflow. Overflow happens during short T1 at FD, 

avoiding need for large overflow cap and reducing DSNU and dark current. 
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Fig. 3. During low light conditions (left plot) no signal overflows during T1. During mid light conditions (mid plot) 

overflow happens just after T1 starts. During high light conditions overflow happens before T1 starts. 

 

 

Fig. 4. ~90 dB DR is achieved with T0/T1=16x. Larger DR is possible by trading off with SNR dip. Part of data 

from the plot is simulated as full char report is not yet available at the moment of the writing of the text. 
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Fig. 5. User programmable event detection mode operating at 1fps. When event is detected, the sensor 

switches to another user defined mode (e.g. 120fps, 10bit, 0.5MP) 

 

 

Fig. 6. 2.3mm x 2.8mm CSP version 

 

Parameter [1] [2] This work 

technology stacked 45nm-65nm stacked 45nm-65nm  stacked 45nm + 40nm 

Pixel pitch (um) 2.2 4 2.79 

Resolution 640 x 480 1024 x 832 600 x 800 

Shutter Global VD Global VD Global VD 

DR (dB) 61 90 90 

Noise (e-) 2.3 (HCG mode) 4 5 (LCG mode) 

Power (mW) 139 - 20mW @10b, 30fps, 
60mW @120fps 

Footprint (mm x mm) 2.6 x 2.95 8 x 8 2.3 x 2.8 

QE 940nm (%) 38 40 36 
Fig. 7. Comparison table 
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Abstract - A novel VGA, 10 micron pixel, multi-functional 

InGaAs imager is presented. This sensor combines standard 

imaging for daylight use and high-gain mode for low light level 

use with event-based imaging and laser multi-spot sensing. The 

fast imaging modes go up to 1.6 kHz for full-frame and are 

sensitive in the Visible to SWIR band (600–1700nm). The event-

based mode and the laser multi-spot mode are able to operate 

simultaneously to the image with their output provided in a 

separate video channel. The event mode is responsive to image 

variations only, enabling to capture landscape events at a rate 

that is more than x10 faster than the standard imaging. The 

laser multi-spot mode responds to multiple laser illumination at 

a fast rate that enables to recognize the presence of laser spot as 

well as its pulse repetition frequency. This work elaborates on 

the multi-functional architecture, demonstrate its key features, 

and shows first measurements of the ROIC and sensor.  

Keywords - SWIR, ROIC, InGaAs, event-based vision, laser 

detection, laser multi-spot, multi-functional  

I. INTRODUCTION  

High Frame per Second (FPS) imaging in SWIR 
wavelengths is a highly desirable feature. For instance, 
autonomous navigation and collision awareness are emerging 
applications that require fast video imaging in addition to the 
known SWIR advantages at fog penetration and night vision 
[1-3]. In some scenarios fast integration and fast analog to 
digital column-parallel conversion are enough to meet the 
high-frame rate needs. However, these circuits present a 
bottleneck that practically limits video frame rate to hundreds 
of Hz [4]. On the other hand, and compared to their visible 
wavelength counterparts, SWIR pixels have a relatively large 
pitch that can be used to increase the pixel readout complexity 
[5]. For fast imaging applications, the pixel can combine 
multiple functions aimed at sensing fast events that may be 
present in the target scenario.  

Event-based imaging is an emerging imaging paradigm 
focused only on variations in the pixel target that breaks the 
imaging speed bottleneck [6]. Typically event vision is 
intended for machine use, for example, event cameras can be 
used for movement detection, object recognition and tracking. 
Moreover, in defense and security applications its fast 
response allows to detect the presence of fast varying hostile 
threats. Navigation systems such as autonomous vehicles and 
drones can use event imaging for movement assistance and 
collision avoidance and at the same time assess motion-based 
depth information. Other processing options may enable its 
use to eliminate image artifacts caused by vibrations and 
turbulence. 

On top of this, many lasers operate in the visible and SWIR 
wavelengths. Hence, laser pulses are a specific case of fast 
events particularly interesting in SWIR. These pulses are very 
fast, lasting a few hundreds of nanoseconds, and its reflection 
generates a small charge packet at the pixel level.  Finding 
laser pulses in the image is a difficult task as this laser pulse 
reflections are slightly above the readout noise in standard 

imaging. Dedicated in-pixel circuitry can be used to enhance 
the response to fast pulses aiding to the laser detection process 
[5]. Moreover, there is an increased interest in decoding the 
laser pulse-repetition rates that are usually modulated up to 10 
kHz. Laser decoding enables to identify between different 
laser sources and provides line-of-sight communication.  

This works presents a novel imager, which is the first to 
introduce event-based imaging and laser-multispot detection 
in the SWIR wavelengths. This new imager provides a 
simultaneous conventional high FPS image synchronized to 
the event-based or to the laser multi-spot output. This imager 
follows a line of multi-functional InGaAs SWIR products. It 
is a fast multi-mode VGA imager implemented with a 10µm 
pitch sensor, while event-based and laser detection are shared 
between four adjacent pixels outputting a QVGA fast image. 
The imager is sensitive in the visible to SWIR bands, and 
provides full format integration of standard video at 1600 Hz 
with 11 bit output. The multi-spot Asynchronous Laser Pulse 
Detections (ALPD) works at a fast 50 kHz detection rate that 
enables the decoding of the laser Pulse Repetition Frequency 
(PRF) and distinguish between different lasers in the image 
scenario. Pixel techniques to combine imaging with event and 
ALPD are patented [7-8]. 

II. MULTI-FUNCTIONAL MODE OPERATION  

Table 1 describes the modes of operation supported and 
their multi-functional combinations. All the imaging modes 
support global integration, the Standard Image Integration 
(SIM) mode integrates the image using a Direct Injection (DI) 
readout [4,9]; and may operate either as Integration Then Read 
(ITR) or as Integration While Read (IWR). In addition, a High 
Gain (HG) imaging mode uses a Charge Trans-Impedance 
Amplifier (CTIA) readout and Correlated Double Sampling 
(CDS) [5,9].  The HG imaging is ITR and is binned between 
four pixels. Moreover, the HG can be synchronized to an 
active illumination to provide active imaging over a time 
window of a few µsec. 

 SIM High Gain  
No Imaging ITR & IWR ITR Active 

Event-based 

detection 

YES  

 

NO 

YESa  

Laser Multi-

spot detection 

YES YES 

No detection YES YES YES  

a. Can work as image-disabled or event-only sub-modes 

Table 1.      ROIC multi-functional modes 

The event and laser multi-spot modes, referred also 
together as the "detection" modes, can operate simultaneously 
with the SIM imaging. The combination of the detection 
modes with the HG mode is disabled due to pixel hardware 
limitations.  

The transition between the modes at Table 1 is very fast 
and can be done within one imaging frame by a simple control. 
As a particular case, the imaging and the detection modes can 



operate separately. This provides, correspondingly, an 
imaging-only mode and a detection-only mode.  

In most cases the functionality of each mode operating 
separately improves performance. This is the motivation to 
support detection-only and imaging–only modes. Particularly, 
at imaging-only mode, the SIM operation is significantly 
faster than its corresponding simultaneous imaging-detection 
operation. On top of this, the event-only mode not only 
improves event performance, but also allows to reconfigure 
the block and change its functionality. More details are 
provided in next section. 

III. ROIC DESIGN  

 Fig. 1 shows the simplified schematic circuit for the imaging 

modes. At DI mode, the DI-bias transistor  together with the 

VDETCOM voltage determine the bias to the diode, while the 

diode current is injected to the integration capacitor and 

subsequently read and drive to the column through a Source 

Follower (SF). IWR mode is enabled by using multiple 

integration capacitors, which enable to read from one 

capacitor while the other is integrating the signal. The 

imaging output signal is driven from the SF to column-

parallel ADCs that provide conversion in the 11-13 bit range. 

The maximum frame rate is achieved with 11 bit operation 

and can reach 1.6 kHz.   

At HG mode, the CTIA is enabled and the charge is integrated 

at the feedback integration capacitor. Four diodes are binned 

to a single feedback capacitor that provides the high gain and 

proper impedance-matching for CDS operation, thus the 

pixel effective area for HG operation is 20 µm. The HG mode 

is ITR only, and provides the best dynamic range and low 

noise for low illumination scenarios. The CTIA shares the 

same SF than the DI, but in this case converting to 11bit is 

enough to meet the dynamic range requirements. The HG 

mode achieves 2 kHz.   

 

Fig. 1. Simplified imaging schematics 

The main parameters for both imaging modes are 

summarized at Table 2.  

 

Mode Parameter Units Value 

 

 

SIM 

 

Format N.A. VGA 

Full well 

capacity 

IWR ke- 500 

ITR 900 

Readout Noise IWR e- 150 

ITR 260 

Max. Frame 

Rate (13/11 bit) 

No Detection  

FPS 

800/1600 

With Detection 200/250 

 

 

 

HG 

 

Format N.A. QVGA 

Full well 

capacity 

ITR ke- 50  

Readout Noise e- 50 

Max. Frame Rate (11 bit) FPS 2000 

Table 2.    ROIC main imaging parameters 

The detection modes are combined within the schematics 

shown at Fig. 1. The signal reconfiguration that enables the 

detection modes reuse the CTIA amplifier. Due to this 

constraint the detection modes can operate only 

simultaneously to the SIM mode. 
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Pixel Functional Block Diagram 
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Fig. 2. Pixel functional block diagram: (a) event detection (b) laser multi-

spot detection 

Fig. 2 describes the detection modes by functional block 

diagrams. The upper figure (a) shows the block diagram for 

the event mode. The signal is injected into the DI circuit and 

simultaneously split in the frequency domain by two filters 

[8]. A low-pass filter enables the signal integration for the 

imaging, while a high-pass filter provides signal derivation 

for the event channel. Following, the variations in the 

derivative channels are compared to a positive and negative 

channel and an event is recognized as positive or negative if 
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it generates a signal above controlled positive and negative 

thresholds. From the information point of view, this channel 

provides 3 levels (1.5 bits) that indicate the presence of a 

negative or positive event, or no change, as usually done in 

dynamic vision systems [6]. 

The image can be disabled to provide an event-only mode. At 

first, this can be done to improve event sensitivity and 

eliminate possible parasitic coupling between the event 

sensing and the image read. However, disabling the image 

integration performed by the low pass filter also enables to 

bypass the high-pass filter as this last one is no further 

required for signal splitting. To this end a bypass filter switch 

has been implemented as shown in Fig. 2. (a). While usually 

the event mode is targeted high frequency fast variations, this 

variant of the event-only mode enables to extend it to respond 

to low frequency variations. 

The laser multi-spot detection is done by reconfiguring the 

filters as shown in Fig. 2 (b). The main differences are in 

replacing the derivative channel by a band-pass filter [7], and 

in disabling the negative comparator as the laser signal is only 

positive. The end of this reconfiguration is to provide the best 

filter noise matching in order to detect low energy laser 

signals.  

Table 2 summarizes the main parameters for the detection 

modes  

Mode Parameter Units Value 

Event Format  QVGA 

Event rate kHz 0.5-25  

Sensitivity e- 1500 

Laser 

multi-spot 

ALPD/SLPD Sensitivity e- 2000 

ALPD Rate kHz 0.5-50 

ALPD duty cycle % 100 

Table II.  ROIC main detection parameters 

Fig. 3 shows the ROIC floor plan, the VGA pixel channel is 

connected to column-parallel detection channels and column-

parallel detection channels. The matrix read is done by rolling 

and after conversion it is driven by four video channel 

outputs.    

 

Fig. 3. ROIC Floor plan 

Fig. 4 shows the packaged prototype used for first 

measurements and characterizations described in the next 

section. 

 

Fig. 4. Packaged prototype photo 

IV. MEASUREMENTS 

Fig. 5. shows an image captured by the new imager at SIM 

mode. Fig. 6. Shows the SIM noise floor histogram. 

 

 
Fig. 5. SWIR image in SIM mode 

 

Fig. 6. Dark noise floor histogram for the SIM image 
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(a) 

 
(b) 

 
(c) 

Fig. 7. Event imaging: (a) measurement setup, (b) event channel output, 

(c) simultaneous SIM image 

Fig. 7 (a) shows the event setup used to test the prototype and 

a single frame capture the event video. The setup consists of 

a rotating chopper for event generation that blocks a 

background light source. The rotating chopper has openings 

of different sizes to verify event response with different 

frequencies. Fig. 7 (b) shows the captured events, where 

green indicates a positive variation and red indicates a 

negative variation. The area captured by the event image is 

denoted by the blue circle in Fig. 7 (a). The inner shutter (the 

upper in the figure) generate events at a rate of 3500 events 

per second, and the outer shutter (the lower in the figure) does 

it at 70 events per second. Both event edges are well 

recognized. Fig. 7 (c) shows the simultaneous SIM image 

captured by the imager, which, as expected, is blurred due to 

the fast rotation of the chopper. 

Fig. 8. Shows a laser spot captured at 10kHz. The laser energy 

generates 4 ke- for the four shared pixels (1 ke- per diode). 

Despite the low laser energy, the signal is detected with a very 

low number of false alarms.  

 
Fig. 8. Laser spot captured at 10 kHz, the FAR observed is <0.1% 

V. SUMMARY 

A novel VGA, 10 micron pixel, multi-functional InGaAs 
imager has been presented. The multi-functional modes 
enable simultaneous combination of SIM mode with detection 
modes. In addition, an HG mode can be used at low light level 
conditions. The imager prototype and first measurements have 
been presented, showing simultaneous SIM and detection, 
event-based imaging and fast laser detection. 
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Abstract—Solid-state flash lidar holds the potential for low-

cost, scalable depth-sensing in self-driving vehicles. However, 

the conventional approach of storing and processing all photon 

arrivals becomes impractical over long (+200 m) distances, and 

alternative partial histogram solutions offer poor laser power 

efficiency. We propose a new approach, guided flash lidar, 

allowing other on-board sensors to narrow down the depth 

search space for a power-efficient flash lidar solution. We use a 

SPAD sensor containing 64-by-32 macropixels fabricated in a 

standard 40 nm CMOS process. Each macropixel is capable of 

timing and storing photon arrivals into 8 bins within an 

independently programmable time window to enable guiding. A 

pair of vision cameras guide each macropixel to a depth window 

of interest by providing stereo depth estimates. The system is 

shown to operate outdoors over a distance of 75 m while running 

at 3 fps. This is a 40-times laser cycle reduction over using a 

sliding partial histogram approach with the same sensor, and a 

25-times data reduction over using a conventional approach. 

The capability for guided flash lidar to mitigate multipath 

reflections is also demonstrated by ranging through a glass door.  

Keywords—Lidar, time-of-flight, 3D vision, stereo depth. 

I. INTRODUCTION  

Combining lidar with other sensors such as cameras and 
radar, is widely considered to be the most safe and reliable 
design approach for self-driving vehicles [1, 2]. Automated 
driving safety frameworks such as those published by BMW 
and Volkswagen all follow a multi-sensory approach [3].  

While traditional mechanical scanning lidar can achieve 
the necessary ranging performance, its high manufacturing 
cost, poor reliability, and frame rate limitations have made it 
less practical for use in commercial self-driving vehicles. On 
the other hand, solid-state flash lidar is a low-cost, scalable 
solution used in many indoor lidar applications such as smart 
phones and robotics. However, self-driving vehicles require 
lidar to perform over long distances (200 m) in outdoor 
environments. For flash lidar to meet these requirements, two 
critical challenges remain: high laser power consumption and 
large data volume. As illustrated in Fig. 1(a), to measure over 
longer distances requires the lidar sensor to count, store and 
process more photons over a wider temporal window. Novel 

Fig. 1: Counting photon arrival events in (a) conventional flash lidar compared (b) to the proposed guided flash lidar approach. 



“partial histogram” lidar sensors attempt to resolve this issue 
but do so at the cost of a severe laser power penalty [4]. 

This work showcases a new approach: guided flash lidar, 
which enables external sources to guide each pixel of the lidar 
to a coarse time window of interest (Fig. 1(b)). By utilizing 
data from other sensors on-board a self-driving vehicle to 
reduce the temporal search space, we propose that guided 
flash lidar can achieve the low power and data output required. 

II. RELATED WORK 

Various alternatives over the conventional histogram 
approach (Fig. 1(a)) have been proposed to reduce the amount 
photon arrival data stored and processed on the lidar sensor. 
These partial histogram approaches can be grouped into two 
categories: zooming and sliding. Both are illustrated in Fig. 2. 

 

Fig. 2: Illustration of (a) zooming and (b) sliding histogram approaches. 

In the zooming approach [5-8], the temporal histogram is 
initially spread across the full distance range. After multiple 
laser cycles, the peak (signal) bin is identified, and the 
histogram is zoomed in to a new, narrower time window. 
Multiple zoom steps can be performed until the required 
precision is achieved. In contrast, the sliding approach [9], 
spreads the histogram across only a subset of the sensing range 
and gradually slides the time window to cover the full range. 

A major disadvantage of all partial histogram approaches 
is the severe laser cycle penalty they incur. In zooming, the 
wider time window used in earlier zooming steps leads to a 
high background photon count in the signal bin. As a result, 
many laser cycles are required to identify the peak bin. In the 
case of sliding, most laser pulses returning from the target fall 
outside of the window being observed at any one time. As a 
result, every L sliding steps used leads to an L-times increase 
in laser cycles and power. An in-depth review and analysis of 
partial histogram approaches is given in [4]. 

While partial histogram approaches may be sufficient for 
indoor applications, a more power-efficient solution is 
required for operating over long distances and under high 
ambient conditions. Although lidar is an effective solution for 
measuring depth to within centimeter precision, other sensors 
on-board a vehicle are also capable of providing range data. 
These include cameras, ultrasound, radar, and GPS/mapping 
data. A guided approach can use this data to reduce the depth 
search space, instead of the inefficient partial histogram 
approach of relying exclusively on the lidar to do so.  

III. GUIDED LIDAR SYSTEM  

A. Guided Lidar Sensor 

 The sensor used to demonstrate this approach (Fig. 3) was 
implemented in a standard 40 nm CMOS process and contains 
64×32 macro pixels. Each macropixel is comprised of 4×4 
SPADs alongside processing for timing and storing photon 
events into 8×12-bit time bins. The primary function of this 
sensor, originally presented in [10], allows each pixel to 
independently scan through time windows until a target (peak) 
is detected, at which point scanning stops and the peak is 
tracked as it moves into adjacent time windows. In this work, 
the sensor is reengineered to allow the time window of every 
pixel to be continuously and independently programmed. 

 
Fig. 3: Micrograph of the sensor used to demonstrate guided flash lidar 

B. Depth Estimates Source: Stereo Depth 

The presented implementation uses a pair of imaging 

cameras to provide stereo depth estimates for guiding the 

lidar sensor. This utilizes the resulting shift in pixel value 

(termed disparity) of matched points between each camera 

image to estimate distance. Distance z is given as a function 

of disparity d, camera baseline B and focal length f by:  

 � = ���  (1) 

Relying on pixel disparity results in discrete depth estimates 

which limits depth resolution. This resulting depth accuracy ∆� is given by: 

 ∆�∆� = ����   ⇒  |∆�| = ��∆���  (2) 

Through interpolation, sub-pixel disparity ∆� as low as 0.1 

pixels is achievable. In practice, accuracy is limited by the 

performance of the adopted disparity matching algorithm. 

For the purpose of demonstrating guided flash lidar, the well-

established semi-global matching (SGM) algorithm [11] is 

used as a convenient and time-efficient solution. 

  

Fig. 4: Process flow of guided flash lidar using stereo depth estimates. 



C. Process Flow 

The processes involved in guiding the flash lidar sensor 

are shown in Fig. 4. The process begins by acquiring images 

from the stereo cameras, followed by solving the disparity 

between images to estimate depth. By prior calibration of the 

cameras and lidar using checkerboard images, the intrinsic 

parameters of all cameras and their pose with respect to each 

other is determined. This allows accurate mapping of the 

stereo depth image to each pixel on the lidar sensor. Finally, 

the depth estimate assigned to each pixel is converted to a 

time (depth) window and the guided sensor only counts 

returning photons within its assigned depth window. 

D. Setup 

The guided lidar setup, running off an Intel Core i7 8th 

generation laptop, is show in Fig. 5. It consists of:  

• the lidar sensor mounted with 25 mm lens and 940 

nm bandpass filter (10 nm full width half maximum) 

• a 940nm laser module running at 80 kHz 

• 2 ×  FLIR Blackfly BFS-U3-16S2M-CS cameras 

with 12 mm lenses, mounted on a meter-length rail 

• a Bosch GLM250VF rangefinder for ground truth 

 

Fig. 5: Guided lidar setup 

The sensor is configured to use 3 m wide depth windows 

(8×0.375 m bins) with a 1.125 m overlap. A maximum of 128 

windows provides 240 m of unambiguous range. Wider depth 

windows (and bins) would give a greater safety margin for 

the guiding depth estimates at the cost of lidar accuracy. 

IV. GUIDED LIDAR PERFORMANCE 

A. Dynamic Outdoor Scene 

Fig.  shows a sample frame captured by the guided lidar 

system operating outdoors (15 klux) at 3 fps. It shows the 

stereo cameras creating depth estimates which are converted 

into coarse depth windows across objects in the scene such as 

the van. Every pixel then resolves any signal peak found in 

its allotted window to produce an accurate depth map. Further 

frames from the scene are given in Fig. 7 showing a sample 

pixel guided to follow the van as it drives away as far out as 

75 m. A sliding partial histogram approach would otherwise 

require stepping through each of the 40+ depth windows, 

resulting in a 40 ×  laser cycle and power increase. 

Alternatively, a conventional histogram approach would 

require storing 200 bins per macropixel as opposed to only 8.  

 
Fig. 6: One frame from the guided lidar system broken down into its 

component parts. Here the system is operating outdoors at 3 fps. 

The processing time for each step of the system within a 

single frame is provided in Fig. 8, showing the lidar exposure 

period to be dominate most of the frame time. In short range 

indoor settings, runtimes exceeding 5 fps are achievable. 

Fig. 7: Three further frames from the scene in Fig. 6 showing the time window of a sample pixel guided to track the moving van. 



 

Fig. 8: Processing time of each step in one frame of the guided lidar system. 

B. Outdoor Accuracy 

The same setup running at 3 fps was used to perform a 

distance sweep up to 50 m under a higher ambient light 

condition of 72 klux. The combined precision and accuracy 

were evaluated by ranging a human target at 81 different 

points (3×3 pixels over 9 frames). The results are shown in 

Fig. 9, demonstrating that while the stereo depth accuracy 

deteriorates with distance, the guided lidar system maintains 

a root-mean-squared error of less than 20 cm.  

 

 
Fig. 9: Outdoor (72 klux) ranging performance operating at 3 fps. Theoretical 

stereo depth accuracy as given by (2) assumes sub-pixel disparity of 0.25. 

C. Guiding Through Glass 

Another benefit of guided flash lidar is mitigating 

multipath reflections. These can lead to ranging artefacts in 

the face of transparent surfaces or glare [12]. Fig. 10 shows 

the system is guided to the human figure beyond the glass 

door which is otherwise obscured if only the first peak is 

captured i.e. using zooming partial histogram approaches. 

 

Fig. 10: (a) A human behind a glass screen is (b) obscured when using the 

first detected laser peak (c) revealed using guided lidar. 

V. SUMMARY 

 The first ever guided flash lidar system has been 
demonstrated. The presented system is capable of operating at 
3 fps under high ambient daylight conditions of 72 klux. 
Outdoor ranging up to 75 m is demonstrated, with each 
macropixel being guided to one of over 40 separate depth 
windows. This results in a 40× reduction in laser cycles (and 
laser power) over a sliding partial histogram approach. An 
equivalent performance using a conventional histogram 
approach would require the sensor to accommodate 25× more 
bins of storage per pixel. Guided flash lidar is also shown to 
mitigate against multipath reflections, successfully ranging 
though a glass door.  

 To improve performance, future design iterations could 
explore alternative guiding sources and parallelizing tasks 
within a frame. Combining a guided lidar approach with the 
increased sensitivity of state-of-the-art SPAD processes [13, 
14] would greatly reduce the required exposure time to range 
over longer distance and/or using shorter exposure periods. 
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Abstract—We present a novel architecture for the design of
single-photon detecting arrays that captures relative intensity or
timing information from a scene, rather than absolute. The pro-
posed method for capturing relative information between pixels
or groups of pixels requires very little circuitry, and thus allows
for a significantly higher pixel packing factor than is possible with
per-pixel TDC approaches. The inherently compressive nature of
the differential measurements also reduces data throughput and
lends itself to physical implementations of compressed sensing,
such as Haar wavelets. We demonstrate this technique for HDR
imaging and LiDAR, and describe possible future applications.

Index Terms—SPAD, LiDAR, HDR, compressed sensing, com-
putational imaging

I. INTRODUCTION

Single-Photon Avalanche Diodes (SPADs) are highly sen-

sitive photodiodes which can detect individual photons with

extremely fast response and high precision. For this reason,

they have become the gold standard in many photon-limited

imaging applications [1], [2]. However, current SPAD array

designs suffer from low spatial resolution due to complex

circuitry and high data throughput needed for capturing ab-

solute timestamps or photon counting, which limits their

usage in many downstream applications. We present a novel,

lightweight readout architecture which overcomes existing

challenges in SPAD array designs: first arrival differential

SPADs (FAD-SPADs). Our technique differs from previously

proposed hardware solutions such as Time to Digital Converter

(TDC) sharing, adaptive sensing [3], data sketching [4], and

sensor fusion [5], [6] because it is not TDC-based, and instead

relies on small circuits that perform data compression at the

sensor.

FAD-SPADs record differential measurements between pix-

els, either in intensity or time of flight. Our key insight is

that rich information is encoded in the relative timing of

the first photon captured within a time window (See Fig.

IV), and this information can be captured by small and

simple digital circuitry. This method can also provide gains in

certain imaging metrics, including significantly reduced circuit

footprint and better pixel packing, orders of magnitude data

size reduction, and improved dynamic range.

Fig. 1. FAD-SPAD operation principle. 1: Either depth intensity differences
can be encoded with the first arrival of a photon within a time window. 2:
The relationship between the relative flux and the probability of recording an
up or down count with digital circuitry is nonlinear.

Fig. 2. FAD-SPAD readout circuitry. The SPADs are grouped, and each group
is connected to the SR-Latch. Based on which group detects a photon first
the counter will count up or down.

II. KEY CONCEPT: THE FAD UNIT

Let us first consider the case of only two SPAD pixels.

We connect their readout to the inputs of an SR latch, as

shown in Fig. 2. The first photon event on either of the two

pixels triggers the latch, which holds its state regardless of

subsequent photon events on either pixel. This information is

passed to an up/down counter, which counts up if pixel 1 saw

the first event, down if pixel 2 saw the first event, and holds

its state if no events were detected. After a short time window

(T ), the latch and SPADs are reset to the ”listening” state,

and this process is repeated for N cycles. With the counter

Mel White is the corresponding author and can be reached at:
email: mel.white@rice.edu.



2

Fig. 3. A comparison of the estimated data throughput and circuit footprint for conventional approaches compared to ours (in highlighted gold boxes). At
the operating conditions given in the figure, our data throughput is two orders of magnitude smaller while only using only 5% of the circuit footprint.

initialized to a midpoint, the resulting readout from the counter

measures the relative flux between the two pixels. An OR gate

connected to both SPADs allows us to pass this information

along to other groups of pixels, or even a cumulative output.

With the addition of an optionally-enabled AND gate, we can

further distinguish between dual events (where both SPADs

see a photon) and single events (only one SPAD sees a photon).

These circuits are extremely compact and throughput-

efficient (see Fig. 3 for details) and thus scalable to large

arrays. Critically, only the FAD unit need be placed inside

the array and near the actual SPADs for accuracy; the counter

and other supporting circuitry can be outside of the array, and

do not impact the fill factor or spatial resolution. The FAD

unit can be constructed of only 12 transistors: 8 for a NAND-

type SR latch, and 4 for the AND gate. We contrast this to

the use of per-pixel TDCs, which are often 3x-4x larger than

the SPAD itself, and must be placed immediately adjacent to

the pixel for accurate measurements.

A. Relationship between differential flux and counter readout

Uncertainty from photon noise provides a nonlinear rela-

tionship between the relative fluxes at each pixel and the

recorded count. This relationship is expressed mathematically

as the difference between the probability of an up or down

count times the number of cycles. Taking the fluxes at the

two SPADs to be Φ1 and Φ2 (photon flux per cycle), and

assuming Poisson arrival processes at both SPADs, this gives:

E(D) = Ncycles[1− e
−(Φ1+Φ2)T ]

(
Φ1 − Φ2

Φ1 +Φ2

)
(1)

Where T is the period of the detection cycle.

B. Connectivity schemes

To build upon the core concept described for two SPADs,

pixels can be grouped together via OR gates at their output.

Thus, if the first photon hits any pixel in group A before

group B, the SR latch will count up, and vice versa for group

B. Moreover, SPADs may be connected to many different

groups simultaneously, allowing for simultaneous differential

measurements.

Some possible configurations are shown in Fig. 4. Local

groupings will suppress local background, while other kinds

of clustering mimicking Haar or Hadamard transforms enable

data compression at the sensor.

Fig. 4. Some examples of ’OR’ connected groups in a 4×4 array. The choice
of grouping will impact the data bandwidth and SNR of the reconstructed
image.

III. ENCODING FIRST ARRIVAL AS INTENSITY DIFFERENCE

In a passive lighting arrangement, the differential informa-

tion reflects the intensity of the scene. A SPAD saturates if

it detects one photon, and so it may seem counter-intuitive

to use them in high dynamic range imaging applications. Yet,

several recent works [7], [8] have shown that single-photon

sensitivity and non-linear behavior of SPADs can be exploited

for high dynamic range imaging. The major drawback of

existing SPAD array architectures is that they suffer from

limited photon counter bit depth; under high photon flux, the

individual photon counters saturate, and any local differences

in intensity are lost. Our approach uses relative rather than

absolute timing information, which will not saturate under

small local gradients, as illustrated in Fig. 5. This can also

be inferred from Equation 1. As fluxes Φ1 and Φ2 increase,

the exponential term disappears, but the differential term in

the numerator remains. As long as the difference does not
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Fig. 5. Left: when the fluxes at pixels A and B are both high, regular
counters will saturate, but the FAD does not. Right: under high background
lighting conditions, the difference between SPADs with counters vanishes;
FAD-SPADs preserve the difference.

Fig. 6. A simulation showing how FAD-SPADs preserve high dynamic range
of an image. The ”blocky” artifacts in our result are due to the fact that we
simulated a scanning 4x4 array (to mimic our prototype).

exceed the limits of the counter, the difference is preserved,

theoretically, under infinite background flux. Fig.6 illustrates

how small flux differences are preserved, even under high-flux

background conditions. The dynamic range of FAD-SPADs is

in practice determined by the largest and smallest detectable

signal, limited by SNR. The interesting case is under high flux

conditions (at low flux, it behaves exactly as two independent

SPADs).

To show that this can be practically achieved, we have

implemented a proof-of-concept prototype containing 16 pix-

els (4x4) using a conventional 180 nm CMOS process with

a Haar grouping scheme, shown in Fig. 7 [9]. While this

implementation includes only two layers of hierarchy of Haar

wavelets, the small size of the local digital circuitry means

this design is scalable to any 2N × 2N array. Notably, the

Haar pixel grouping scheme combined with the compact size

of the support circuitry results in minimal impact on device’s

footprint; with no additional design effort, we achieve a 34%

fill factor.

IV. ENCODING FIRST ARRIVAL AS DEPTH DIFFERENCE

Flash LiDAR systems utilize SPAD arrays to perform

single-shot 3D imaging without the need for mechanical

scanning [10]. However, SPAD arrays require per-pixel timing

circuits (TDCs) with high spatial footprint and data throughput

limiting the spatial and temporal resolution of such systems.

In contrast to TDCs, the FAD units are more lightweight

and are capable of depth difference between pairs of pixels.

Fig. 7. A micrograph of the fabricated prototype in 180 nm CMOS. The 4x4
array (excluding the pad ring and supporting circuitry) measures 190µm ×

190µm and has a fill factor of 34%.

Using the FAD units, we design a flash LiDAR system that

can perform high-resolution 3D imaging and scene inference

[11]. The core idea is that FAD captures the relative order

of photon arrivals at the two pixels. There exists a one-to-

one mapping between this differential measurement and depth

differences between the two pixels. FAD-LiDAR enables 3D

inference tasks, including depth edge detection, depth-based

segmentation, surface normal estimation, and depth imaging

with only a few TDCs as shown in Fig. 8. It is worth

noting that for cases where absolute depth is not required,

our approach can be implemented without any TDCs.

Consider that the laser and detector are collocated. Assume

SPAD pixel 1 points to a scene location that is closer to the

detector, and SPAD pixel 2 to a farther location (in a setup

shown in the bottom left section of Fig. ). Then, within a time

window, photons reaching SPAD pixel 1 are more likely to

arrive earlier than photons from SPAD pixel 2. Over a large

number of cycles, the relative frequency of first arrival pho-

tons between the pixels can capture information about depth

difference ∆d. This leads to a monotonic mapping between

the FAD measurements, FAD, and the depth difference, ∆τ ,

as

FAD ∝ −Ncyclesα1α2

(
∆τ

2σ

)
(2)

where Ncycles is the total number of laser cycles and α1, α2

are the photon flux (per cycle) at the two pixel locations 1 and

2. We can acquire intensity estimates α̂1, α̂2 by using intensity

measurements. To decouple illumination effects caused by

single photon arrivals, we (1) enable the AND gate so that

only when both pixels receive returning photons does FAD

perform a comparison (2) measure intensity values at each

pixel and factor them out. After these operations, we reach a

normalized FAD measurement nFAD that is only dependent

on the relative depth between two pixels.

nFAD =
FAD

Ncyclesα̂1α̂2
(3)

nFAD ∝ −

(
∆τ

2σ

)
(4)

Using FAD units and nearest-neighbor connectivity, we

directly perform 3D scene inference tasks as shown in (Fig. 8).

Tasks such as depth edge detection, depth-based segmentation,

and normal estimation are sufficient with FAD measurements
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Fig. 8. 3D imaging applications of FAD LiDAR. Column (a): intensity view
of the scenes. Columns (b) to (f) correspond to different 3D applications as
labeled in the figure.

Fig. 9. High-resolution 3D imaging and surface normals by FAD LiDAR
emulated using a single-pixel SPAD setup. Reconstruction from a scanning-
based LiDAR design is denoted as Ground Truth. Conventional flash LiDAR
designs B1, B2, and B3 (see [11] for details) suffer from performance tradeoffs
resulting in poor depth resolution (B1), range (B2), or spatial resolution (B3).
Our differential flash design offers significantly better reconstruction quality
for the same data throughput as conventional baselines.

(relative depth information) and per-pixel intensity estimates.

Depth edge detection and segmentation can be performed by

appropriately thresholding nFAD measurements, while normal

estimation requires a two-step procedure: first inverting rel-

ative depth difference from nFAD, then performing Poisson

integration [12] to generate clean surface normal estimates.

To reconstruct absolute depth across the scene, we can

capture a few absolute ToF measurements by sparsely dis-

tributing TDCs across the FAD array. We show that FAD-based

LiDAR provides depth maps at higher resolution and range

than existing TDC-based flash LiDAR, and demonstrate via

emulation that FAD-LiDAR provides improved performance

for the same data bandwidth (Fig. 9).

V. CONCLUSIONS AND DISCUSSION OF FUTURE

DIRECTIONS

In this paper we present techniques and supporting analysis

for a novel type of SPAD array design based on differential

sensing. We also present two applications: HDR imaging and

3D imaging, featuring two architectures (Haar and nearest

neighbor). However, this is only a small sample of the ca-

pabilities enabled by FAD architectures.

For example, the differential nature of FAD units is inher-

ently amplifying of local differences and thus could enhance

contrast in bioimaging applications, such as the loss in contrast

due to scattering.

There is also fertile space for analysis of other differen-

tial connectivity schemes to enable compressed sensing of

images. Binary compressed sensing matrices (eg, Hadamard

transforms) can be implemented similarly to our Haar example

for HDR by simply changing the connected groups. The

differential grouped measurements could also be used to do

adaptive sensing in sparse image acquisition. For example, if

a large differential signal is found in one region of an image,

then a smart sensor could continue to collect finer-grained

measurements in that region, and not collect redundant data

in a region of the image that lacks contrast.

Finally, the gains in circuit footprint and scalability of the

concept we show here could facilitate the development of

larger and denser SPAD arrays with high photon detection

probability.
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Abstract—Latency and noise are crucial aspects of Event-based

Vision Sensors. Yet, in simulators used to create synthetic event data

these effects are predominantly modeled phenomenologically and are

rarely calibrated to actual measurements or circuit simulations. This

work presents a physics-based latency and noise model achieving

strong resemblance with circuit simulations and measurements.

The model is computationally efficient enough to be suitable for

camera simulation. This enables accurate training data synthesis for

algorithm development and guides sensor design.

I. INTRODUCTION

Event-based Vision Sensors (EVS) experience an increasing

commercial interest [1]–[6]. Simulators are commonly employed

to synthesize events from videos connecting sensor design and

algorithm development depending on application requirements

[7]–[10]. Today’s simulators, however, are mostly phenomeno-

logical and lack calibration against actual sensor designs using

simulation or measurements [7]–[9]. [7], [8] introduced adaptive

frame-upsampling before event generation and randomized the

contrast threshold to allow for generalization of trained algo-

rithms to sensor variability. [9] introduced modeling of pixel

non-idealities. Pixel latency was modeled by a single pole IIR

filter whose bandwidth scales proportional to the light level. A

pixel-wise Gaussian-distributed contrast threshold models sensor

non-uniformity. Periodic leak events and Poisson sampled noise

events were introduced into the event stream, whereas the noise

events were scaled with luma level to capture light dependence.

[10] extended the attempt towards realistic event simulation by

calibrating a more complex semi-empirical pixel latency model

to circuit simulations. Furthermore, refractory period and latency

from the peripheral circuitry were modeled. [10] presented

reasonable matching of pixel latency at higher photocurrents,

but matching at low light was limited. Conversely to [9], [10]

did not inject noise events into a pre-computed noise-free event

stream, but directly added random noise to the signal amplitude

before the comparators. However, bandwidth was not considered.

Modeling the noise directly in the voltage domain is crucial to

match effects such as time-stamp uncertainty caused by noise,

or fire probabilities in case the signal is in proximity of the

contrast threshold. Leak events should also be modeled in the

voltage domain to reflect the signal dependence of leak events.

In order to advance event simulators, this work derives

physical models for latency and noise considering bias and

temperature conditions (Sec. II and Sec. III). It will be shown that

the models surpass the matching to circuit simulations achieved

in [10] (Sec. II). Views on parameter extraction will be outlined

and the model is validated against measurements (Sec. V).

II. LARGE-SIGNAL PIXEL LATENCY MODEL

Fig. 1 depicts a simplified schematic of the analog portion

of an event-based vision pixel. The photodiode current, IPD =
Iphoto + Idark, is converted into a logarithmic voltage measured at

node VFE. MSF decouples the front-end circuit from a difference-

detecting switched-capacitor filter of gain G. Subsequent com-

parators determine if a temporal contrast beyond a predefined

ϕS

ϕG=VFE

CC

IPD

a) IBSF

VO1

C1 C2

reset

tΦ1 

Φ2 
Φ  

treset tstep tobservation
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tfire

pdft-fire
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b)

c)

Figure 1. a) analog EVS pixel circuit schematic, b) temporal contrast
measurement timing diagram, and c) fire probability "S-curve" and time-
stamp distributions.

threshold is detected. Fig. 1b illustrates the temporal contrast

step measurement technique [11], [12]. Fig. 1c depicts that at

increasing contrast step, C = [Φ2 − Φ1]/Φ1, a corresponding

increase in event firing probability is observed. The contrast at

which the probability amounts to 50% is termed the Nominal

Contrast Threshold (NCT) [3]. This measure is of relevance

as it indicates the effective contrast threshold of a given pixel

at a given measurement condition. Ideally, the transition from

low firing probability to high firing probability is sharp around

that NCT value. However, temporal noise causes randomness

in trigger probability and results in the shape that coins this

characteristic "S-curve." Clearly, the slope of the S-curve is

important to characterize a pixel. The right part of Fig. 1c

illustrates the event firing time probability distribution. The

firing time has an offset latency µt determined by transients

to charge/discharge nodes in the analog portion of the event

pixel, as well as propagation and scan delays from the digital

peripheral readout. Event pixels exhibit a timing uncertainty σt

which is characterized by electronic noise and randomness in the

peripheral readout. For S-curve characterization, it is preferred to

select a small region of interest to separate the readout delay and

uncertainty from pixel latency. It is clear that merits like NCT

or firing time strongly depend on: radiance, the time interval of

pixel reset and applied scene contrast step, as well as the overall

observation time under which e.g. noise is permitted to elevate

above a contrast threshold. This implies that such merits do not

have full predictive value at operation under varying conditions.

Therefore, a model-based approach is required.

All transistors are assumed to operate in weak inversion and



saturation and are modeled as:

ID = I0 ·
W

L
· exp

(
φG − ζ · φS

ζ · VT

)

(NMOS)

ID = I0 ·
W

L
· exp

(
−φG + ζ · φS

ζ · VT

)

(PMOS), (1)

with drain current ID, specific current I0, width W and length L,

gate and source potentials φG and φS, slope-factor ζ ≈ 1..1.4 and

thermal voltage VT = kB · θ/q at temperature θ, with Boltzmann

constant kB and elementary charge q. The inverting amplifier in

the feedback path of the logarithmic amplifier is modeled by an

affine-linear relation: φG1 = A · [Vx−φS1], with amplifier gain A
and some offset term Vx. With ID1 = IPD the stationary solution

is given by:

t → ∞ ⇒ φG1 =
A · ζ · Vx

ζ +A
·

[

1 + ln

(

IPD

I0 ·
W1

L1

)]

. (2)

By rearranging ID(t)/ID(t0) one yields:

ID1(t) = ID1(t0) · exp

(
∆φG1(t)

ζ · VT

− ζ ·
∆φS1(t)

ζ · VT

)

(3)

= ID1(t0) · exp

(
ζ +A

A · ζ · VT

·∆φG1(t)

)

. (4)

Using Kirchoff’s current law, one can now describe the de-

terministic large-signal circuit behavior through the following

ordinary differential equation:

d∆φFE

dt
+

A · ID(t0)

[1 +A] · CC

· exp

(
ζ +A

A · ζ · VT

·∆φFE(t)

)

=
A

[1 +A] · CC

· IPD. (5)

Similarly, the source follower buffer is modeled by:

d∆φO1

dt
=

1

CLSF

·

[

ISF

−ID2(t0) · exp

(
ζ ·∆φO1(t)

ζ · VT

−
∆φFE(t)

ζ · VT

)]

, (6)

with bias ISF and CLSF being the load seen by the buffer. Note,

that this derivation assumes a PMOS buffer, but the derivation

for an NMOS buffer can be made analogously.

One critical scenario used for characterization is the response

to a temporal contrast change (see Fig. 1b). Using separation of

variables it can be shown that the ODE in Eq. 5 has an analytical

solution. The input signal:

Iphoto(t) =

{

Iphoto-0 for t = t0

Iphoto-1 for t > t0
(7)

corresponds to a linear scene-level temporal contrast step:

Cscene =
Iphoto-1 − Iphoto-0

Iphoto-0

. (8)

Assuming the starting conditions: ID1(t0) = Iphoto(t0) and

∆VFE(t0) = 0, the solution to Eq. 5 is given by:

∆v =
∆VFE

VT ·
A·ζ
ζ+A

= ln

(
Iphoto-1

Iphoto-0

·
1

1 + Cscene · exp[−[t− t0]/τ ]

)

, (9)

with time-constant:

τ =
1 +A

A
·
A · ζ

ζ +A
·
VT · CC

Iphoto-1

. (10)

Unfortunately, separation of variables of ODE in Eq. 6 leads

to transcendental terms prohibiting an analytical solution for the

response of VO1 to a temporal contrast step in Iphoto. Furthermore,

Eq. 5 also leads to transcendental terms if driven by other input

signals than contrast steps. Numerical solutions are required. At

low photocurrents, the logarithmic amplifier dominates the pixel

latency and the SF buffer can be approximated by its DC gain

of 1/ζ.

Fig. 2 shows that this model yields a significant matching im-

provement against circuit simulations compared to [10]. Forward-

Euler integration is used to solve the ODEs.

III. SMALL-SIGNAL PIXEL NOISE MODEL

Noise is assumed to be a small-signal phenomenon. Simplified

schematics of the logarithmic amplifier and source-follower and

their small-signal equivalent representations are given in Fig. 3.

Here, channel length modulation is neglected.

For NMOS iD is given by:

iD = gmG · φG + gmS · φS (11)

gmG =
∂ID

∂φG

=
ID

ζ · VT

(12)

gmS =
∂ID

∂φS

= −
ID

VT

= −gmG · ζ. (13)

PMOS characteristics can be derived analogously.

Figure 2. Evaluation of the transient model.
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Figure 3. Simplified log-amplifier schematic a) and SF schematic b) and
their respective small signal circuits in c) and d), respectively.

It is assumed that Ib ≫ Iphoto such that gmG2 ≫ gmG1. Using

dominant pole approximation1 , φG1 results in:

φG1 =
iPD

gmG1

·
1− jω/z1

[1 + jω/pd1] · [1 + jω/pnd1]

+
ib

gmG2

·
1 + jω/z2

[1 + jω/pd2] · [1 + jω/pnd2]
, (14)

with the zeros z1 = gmG2

CC
and z2 = gmG1·ζ

CC+CPD
, dominant poles

pd1 = pd2 = gmG1

CC
and non-dominant poles pnd1 = pnd2 =

gmG2

CPD·

CC+CPD+CL
CC

. With pd1 ≪ pnd1 ≪ z1, the first transfer

function can be approximated simply by neglecting pnd1 and

z1 yielding a single-pole system. As z2 ≪ pd2 ≪ pnd2, the

second transfer function first increases gain between z2 and pd2

and then drops like a single pole system above pnd2. Hence, we

approximate
1+jω/z2
1+jω/pd2

≈
pd2

z2
yielding:

φG ≈
iPD

gmG1

·
1

1 + jωCC/gmG1
︸ ︷︷ ︸

=τ1

+
ib

gmG2

·
(CC + CPD + CL)/CC

1 + jωCPD ·
CC + CL

CC

/gmG2

︸ ︷︷ ︸

=τ2

. (15)

Analogously, φO1 can be derived to:

φO1 =
1

ζ
·

φFE

1 + jωCLSF/[ζ · gmG]

+
1

ζ · gmG

·
iBSF

1 + jωCLSF/[ζ · gmG]
︸ ︷︷ ︸

=τ3

. (16)

Shot noise is considered to be the primary noise source for

a standard pixel under regular operating conditions. In contrast,

flicker noise often is negligible. However, as the power spectral

density of flicker noise scales inversely with transistor size and

for small devices can vary by several orders of magnitude, it

can contribute to noisy pixels. Especially Ib and M2 have to be

designed with care. The goal of this work is to derive a noise

model for a "standard pixel." Thus flicker noise is neglected. For

weak inversion operation in the saturation domain the single-

sided power spectral density is 2qI . M1 exhibits shot noise

1Dominant pole approximation expresses a transfer function by
dominant pd and non-dominant pnd poles: 1

1+jωα+(jω)2·β
≈

1
[1+jω/ppd]·[1+jω/pd]

. With 1
[1+jω/ppd]·[1+jω/pd]

≈

1
1+jω/pd+(jω)2/(ppd·pd)

, pd = 1/α and ppd = α/β results.

of the same magnitude as the photodiode given that they carry

the same current under static operation and both noise sources

share the same transfer characteristic. However, they are assumed

uncorrelated. Similarly, M2 and the bias Ib share the transfer

function and noise magnitude and, again, are uncorrelated. Thus,

the autocorrelation functions of additive noise sources at VFE and

VO1 are:

RFE,FE(∆t) = ζ ·
kB · θ

CC

· e
−

|∆t|
τ1

+ ζ ·
kB · θ

CPD·CC·[CC+CL]

[CC+CPD]2

· e
−

|∆t|
τ2 (17)

and

RO1,O1(∆t) =
kB · θ

CLSF

· e
−

|∆t|
τ3 . (18)

IV. AUTOREGRESSIVE MODEL

Fig. 4 illustrates the signal flow used by the presented EVS

model. The photodiode current IPD = Iphoto + Idark is propagated

to VFE using ODE model (Eq. 5) solved using Forward-Euler

integration. Noise is added in a that matches the autocorrelation

function Eq. 17. The superposition of signal and noise is then

fed into the SF-buffer using Eq. 6. Now the noise contribution of

the buffer is added in a way its autocorrelation function matches

Eq. 18. The final result is then used to drive the difference

detecting circuit which is also modeled by a simple differential

equation in order to model signal dependent leak events and

high-pass filter characteristic proposed in [5].

Ordinary 

Differential 

Equation

autoregressive 

noise model

+

Ordinary 

Differential 

Equation

autoregressive 

noise model

+

VFE VO1

difference 

detector

RFE,FE RO1,O1

Figure 4. Pixel model signal flow diagram combining large-signal
deterministic and small-signal noise behavior.

By construction, the noise models Eq. 17 and Eq. 18 describe

single pole characteristics. Using Forward-Euler integration, the

response X of such a system to noise e describes a first-order

autoregressive model [13]:

X(n) = X(n− 1) + [e(n)−X(n− 1)] ·
∆t

τ
(19)

= Φ1,1 ·X(n− 1) + f(n), (20)

where τ is the system time constant and ∆t is the Forward-

Euler time-step. e(n) ∼ N (0, σ) is derived from a random

number generator in order to yield a white Gaussian noise

process f(n) ∼ N
(
0, σ · ∆t

τ

)
. Choosing E[X(0)] = 0, it can

be shown that X(n) is wide-sense stationary

⇒ E[X(n)] = 0 (21)

var[X] = Φ2
1,1 · E[X2(n− 1)] + σ2

·
[∆t]2

τ2
(22)

⇒ var[X] = σ2
·

[
∆t
τ

]2

1−
[
1− ∆t

τ

]2 , (23)

with RX,X(n) = Φn
1,1 · σ2

X . Furthermore, we can show that

the autocorrelation function of such an auto-regressive process

RX,X-a.r. converges against the time-continuous RX,X-t.c. model-

ing white noise in first-order low-pass-filter systems:



Figure 5. Sample paths of contrast step response using the deterministic
ODE and the autoregressive noise model.

Figure 6. Comparison of noise-free time-stamp tn.f., median Q50[t(ω)]
and mean µ[t(ω)] vs. contrast (left), and illustration of relative time-
stamp variability σt/Q50[t(ω)] as indicator of confidence (right).

RX,X−t.c.(∆t ·m) = σ2
X · exp

(

−
∆t ·m

τ

)

(24)

≈ σ2
X ·

[

1−
∆t

τ

]m

(25)

= σ2
X · Φm

1,1 = RX,X-a.r.(m). (26)

Rearranging Eq. 23 for σ as function of desired σX and τ (cf.

Eq. 17, Eq. 18) and step-size ∆t yields physical noise behavior

of desired magnitude and bandwidth.

V. PARAMETER EXTRACTION AND VALIDATION

Fig. 5 shows Monte-Carlo sample paths as well as a noise-

free solution of the ODE. Fig. 6 makes the crucial observation

that the noise-free time-stamp can be approximated using the

mean or median of the noise-affected time-stamp, provided

the scene contrast is significant enough. This in turn allows

the utilization of time-stamps from contrast step measurements

for model parameter estimation using an optimization approach

p⃗∗ = arg min
p⃗

∥
∥t⃗i − tmodel(Iphoto-0, Iphoto-1, p⃗)

∥
∥. In the right part

of Fig. 6, it is illustrated that the relative time-stamp variability

σt/median[t(ω)] can be used as indicator of confidence in this

approximation. Thus it can guide the selection of data points

used for model parameter extraction. Three different paths are

conceivable. Firstly, the analytical solution can be utilized for

parameter optimization in a way Monte-Carlo trials can be

omitted (Eq. 9). Rearranging Eq. 9 for the time-stamp at which

events are triggered yields

tevent = τ · ln

(
Cscene · [1 + C∞]

Cscene − C∞

)

, (27)

with C∞ = exp
[

Vthreshold

VT·(1+ζ)·G

]

−1 and G being the difference de-

tector gain and Vthreshold the trigger level of the comparators. tevent

shows a dependency of τ and the characteristic threshold C∞ that

can be interpreted as contrast threshold if the pixel would exhibit

Figure 7. Comparison of measured pixel-level S-curves (top-left) vs.
model (top-right), measured response to sinusoidal stimulus (middle-left)
vs. model (middle-right) and measured response to squarewave stimulus
(bottom-left) vs. model (bottom-right) across a 4.6x radiance, a 7.5x
contrast and a 5x frequency range.

no noise. Combining a set of contrast steps at varying starting

radiance yields independent measurements suitable to extract

both parameters jointly. Secondly, a numerical solution can take

into account the transient impact of MSF. Lastly, to utilize low-

contrast steps, the impact of noise needs to be considered using

the autoregressive model. Note that alternatively to fitting time-

stamps, one can also fit event firing probabilities. However,

here, clearly noise can never be neglected. We measured devices

of [5], extracted parameters, and compared measurements vs.

simulations in Fig. 7 yielding good resemblance.

VI. CONCLUSION

We present a physical model for EVS pixels improving accu-

racy for latency and noise phenomena. We outline three paths for

parameter extraction and demonstrated good model resemblance

to circuit simulations as well as measurements.
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Abstract—Dynamic Vision Sensors (DVS) record ”events”
corresponding to pixel-level brightness changes, resulting in data-
efficient representation of a dynamic visual scene. As DVS expand
into increasingly diverse applications, non-ideal behaviors in
their output under extreme sensing conditions are important to
consider. Under low illumination (below ≈10 lux) their output
begins to be dominated by shot noise events (SNEs) which
increase the data output and obscure true signal. SNE rates
can be controlled to some degree by tuning circuit parameters
to reduce sensitivity or temporal response bandwidth at the
cost of signal loss. Alternatively, an improved understanding
of SNE statistics can be leveraged to develop novel techniques
for minimizing uninformative sensor output. We first explain a
fundamental observation about sequential pairing of opposite
polarity SNEs based on pixel circuit logic and validate our
theory using DVS recordings and simulations. Finally, we derive
a practical result from this new understanding and demonstrate
two novel biasing techniques shown to reduce SNEs by 50% and
80% respectively while still retaining sensitivity and/or temporal
resolution.

Index Terms—dynamic vision sensor, event camera, DVS, noise
statistics

I. INTRODUCTION

Dynamic Vision Sensors (DVS), or event cameras, effi-

ciently encode dynamic visual information into a sparse stream

of ON (increasing brightness) and OFF (decreasing) events

with high temporal resolution. This sensing paradigm has

several benefits including wide dynamic range, high temporal

resolution, and low power consumption. DVS have already

proven useful for many applications related to machine vision

[1]. Despite these benefits, physical noise sources cause erro-

neous events even when there are no brightness changes in

the scene, and elevated noise rates when illumination is low

have thus far hindered widespread adoption in applications

requiring high performance in dim lighting.

Under low illumination, Shot Noise Event (SNE)s dominate

DVS noise [2]–[4], and denoising DVS output has been the

focus of numerous efforts [5]–[7]. Although many custom

denoising strategies have been developed, none explicitly

consider noise event-pair statistics. Many aspects of DVS

noise remain difficult to predict, but recent work has made

significant progress toward understanding of the processes and

trade-offs that influence SNEs [0], [8], [9].

We expand on these efforts and explain a simple yet

previously unreported behavior inherent to the self-timed reset

RG supported by Swiss National Science Foundation grant SCIDVS
(200021 185069).

necessary for DVS pixel operation. In Sec. II we describe

the basic functionality of the DVS pixel with an emphasis on

the circuit behavior that influences noise statistics. Sec. III

describes the observation that SNEs tend to occur in opposite

polarity (ON/OFF) pairs, and explains this behavior based

on pixel reset logic. Sec. IV then demonstrates a practical

result of this observation by demonstrating two sensor bias

techniques that reduce SNE rates by directly manipulating

noise statistics.

II. DVS PIXEL OPERATION

The first practical DVS pixel was introduced in [10], and

modern event camera pixels are based on the same fundamen-

tal stages described in Fig. 1. These core components are

a logarithmic transimpedance photoreceptor which generates

an output voltage, Vpr, proportional to log photocurrent, a

change amplifier that amplifies signal changes around a fixed

reference point, two independent comparators for generating

ON and OFF output events when the signal changes by a

tunable threshold value, and a circuit to reset the change

amplifier after each event to allow the pixel to respond to

changes around a new reference level. In most cases, this new

reference is approximately the signal level that generated the

previous event. Readout circuits in the focal plane periphery

record and timestamp the resulting sequence of ON and OFF

events to encode pixel-level brightness changes.

Pixel behavior is refined by adjusting programmable biases

(highlighted in red and depicted as current sources in Fig. 1),

allowing the user to tune performance for a variety of sensing

tasks. Ipr and Isf adjust the temporal response of the photore-

ceptor, which is also limited by the background photocurrent.

The effects of these two biases on SNE rates are extremely

complex, and thoroughly described in [11]. The next set of

biases define the independent ON and OFF thresholds, θON

and θOFF , which are proportional to log( Ion
Id

) and log( Id
Ioff

)
respectively. After each event, Mr shorts the input and output

of the change amplifier to prevent subsequent events during

a refractory period or ”dead-time”, and opens again as the

reset node rises. Irefr controls the rate at which the reset

node charges, and can be tuned to increase or decrease the

maximum firing rate for individual pixels. Composite effects

of these biases are further detailed in [9].

https://sensors.ini.uzh.ch
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Fig. 2: Recorded DAVIS346 SNEs under 10 mlux illumination with
high bandwidth biases. A: Per pixel ON and OFF SNE rates are
nearly balanced, even for pixels with an abnormally high noise rates.
B: Inter-Spike Interval (ISI) histograms reveal that over 90% of pixel
SNE pairs are opposite polarity and occur at shorter time intervals
than like polarity pairs.

III. SHOT NOISE EVENT PAIRS

To better understand the root causes of DVS SNEs, exam-

ining the scatter plot of ON and OFF noise events shown in

Fig. 2 reveal ON and OFF events are nearly balanced in each

pixel. At first glance, this result is counter-intuitive given the

well-known mismatch in independent ON and OFF threshold

levels [4], [10]. Specifically, noise rates are known to increase

dramatically with sensitivity [0]. Because θON and θOFF are

independent, it is extremely unlikely that a pixel with a low

θON will also have an extremely low θOFF . In Fig. 2, the

99th percentile is depicted by the outer dashed red arc, and

ON and OFF SNE rates of each type are still roughly balanced

for pixels outside this region, indicating a dependency that is

not explained by prior reasoning.

To further explore and illustrate this phenomenon, we calcu-

lated the ISI between consecutive event-pairs in each pixel and

specifically examined the polarities of the pairs. Examining

the ISI distribution in Fig. 2B reveals that over 90% of

sequential noise event pairs are of opposite polarity and these

pairs typically occur at shorter time intervals (≈ 1/10). Both

of these observations about SNE pairs are in contrast with

previous assumptions, which predict noise events should be

independent of pixel history.

Fig. 3 explains how this behavior is a direct result of

the pixel’s self-timed reset. Events are generated when the

signal deviates from a memorized reference level by more

than an ON (θON ) or OFF (θOFF ) threshold. Considering

a filtered white gaussian noise pattern, each event resets

the pixel’s reference to a level offset from the mean noise

value. Since gaussian noise tends to return to its mean value,

this new reference increases the probability of an event of

opposite polarity happening within relatively short time. This

hypothesis is upheld in 4, which demonstrates how improving

the v2e DVS simulator [2]1 by injecting white noise prior to

the event generation block accurately models observed noise

statistics.

IV. BIAS ADJUSTMENTS FOR SNE RATE REDUCTION

When operating in dim conditions, noise rates are typically

managed by reducing sensitivity or photoreceptor bandwidth,

but true signal is suppressed as changes too small or fast for

the selected biases are missed completely. If an application

1v2e on github - see –photoreceptor noise option

https://github.com/SensorsINI/v2e
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requires detecting fast moving or dim objects/features, mod-

erately elevated noise rates can be accepted and aggressive

denoising applied after reading events off-chip at the cost of

increased latency, power, computation, and data bandwidth.

Alternatively, reasoning from Fig. 3 reveals two novel biasing

strategies to reduce background noise rates while still allowing

pixels to be biased for high sensitivity and bandwidth.

The first strategy is to increase the refractory period. Fig. 5

demonstrates that this method decouples the reset level from

the signal level that generated the previous noise event and

reduces overall noise rates. Fig. 5A shows more than 50%

reduction in noise rates and Fig. 5B demonstrates decoupling

of ON/OFF pairs with a longer refractory period. Simulations

suggest that in order for this decoupling to occur, the refractory

period must be ≥
1

2πf3dB
, where f3dB is the low-pass corner

frequency of the photoreceptor/source follower combination.

The second technique is deliberately applying a large imbal-

ance in ON and OFF thresholds to force the reference level to

settle near the extreme of the noise distribution corresponding

to the more sensitive threshold. This large imbalance reduces

the probability that a subsequent noise event will occur to reset

the reference, thus breaking the event-pair cycle. In practice,

Fig. 6 shows that this method works well when ON is much

more sensitive than OFF, and Fig. 6B demonstrates up to

an 80% reduction in noise event rates, even with an expected

increase in sensitivity to ON changes.

V. CONCLUSION

SNE rate is an important consideration for expanding the

utility of DVS into diverse applications in challenging lighting

conditions. In this paper, we identified a key observation about

how SNEs tend to occur in pairs of opposite polarity, and ex-

plained this phenomenon based on pixel architecture and logic.

Leaning on this explanation, we propose and demonstrate

two novel bias techniques for reducing SNE rates. Limiting

noise rates in dim lighting conditions improves DVS Signal

to Noise Ratio (SNR), and the techniques we describe facilitate

direct manipulation of noise statistics. Further exploration of

the benefits of these techniques should be explored in task

specific scenarios. After achieving desired SNR performance,

a deeper understanding of the resulting noise statistics can
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three different illumination levels (1, 10 and 100 mlux). Horizontal
axis is refractory period bias current ranging from 118pA (far left)
to 8.7nA (far right). Increasing the refractory period reduces average
noise rates by more than 50% for all illumination levels. B: Scatter
plots of individual pixel ON and OFF noise events validate that the
longer refractory period decouples ON and OFF event pairs.

aid in more efficient and effective denoising strategies, and

inform improvements to already effective machine learning-

based denoisers such as [6].
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