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Abstract—Latency and noise are crucial aspects of Event-based
Vision Sensors. Yet, in simulators used to create synthetic event data
these effects are predominantly modeled phenomenologically and are
rarely calibrated to actual measurements or circuit simulations. This
work presents a physics-based latency and noise model achieving
strong resemblance with circuit simulations and measurements.
The model is computationally efficient enough to be suitable for
camera simulation. This enables accurate training data synthesis for
algorithm development and guides sensor design.

I. INTRODUCTION

Event-based Vision Sensors (EVS) experience an increasing
commercial interest [1]–[6]. Simulators are commonly employed
to synthesize events from videos connecting sensor design and
algorithm development depending on application requirements
[7]–[10]. Today’s simulators, however, are mostly phenomeno-
logical and lack calibration against actual sensor designs using
simulation or measurements [7]–[9]. [7], [8] introduced adaptive
frame-upsampling before event generation and randomized the
contrast threshold to allow for generalization of trained algo-
rithms to sensor variability. [9] introduced modeling of pixel
non-idealities. Pixel latency was modeled by a single pole IIR
filter whose bandwidth scales proportional to the light level. A
pixel-wise Gaussian-distributed contrast threshold models sensor
non-uniformity. Periodic leak events and Poisson sampled noise
events were introduced into the event stream, whereas the noise
events were scaled with luma level to capture light dependence.
[10] extended the attempt towards realistic event simulation by
calibrating a more complex semi-empirical pixel latency model
to circuit simulations. Furthermore, refractory period and latency
from the peripheral circuitry were modeled. [10] presented
reasonable matching of pixel latency at higher photocurrents,
but matching at low light was limited. Conversely to [9], [10]
did not inject noise events into a pre-computed noise-free event
stream, but directly added random noise to the signal amplitude
before the comparators. However, bandwidth was not considered.
Modeling the noise directly in the voltage domain is crucial to
match effects such as time-stamp uncertainty caused by noise,
or fire probabilities in case the signal is in proximity of the
contrast threshold. Leak events should also be modeled in the
voltage domain to reflect the signal dependence of leak events.

In order to advance event simulators, this work derives
physical models for latency and noise considering bias and
temperature conditions (Sec. II and Sec. III). It will be shown that
the models surpass the matching to circuit simulations achieved
in [10] (Sec. II). Views on parameter extraction will be outlined
and the model is validated against measurements (Sec. V).

II. LARGE-SIGNAL PIXEL LATENCY MODEL

Fig. 1 depicts a simplified schematic of the analog portion
of an event-based vision pixel. The photodiode current, IPD =
Iphoto + Idark, is converted into a logarithmic voltage measured at
node VFE. MSF decouples the front-end circuit from a difference-
detecting switched-capacitor filter of gain G. Subsequent com-
parators determine if a temporal contrast beyond a predefined
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Figure 1. a) analog EVS pixel circuit schematic, b) temporal contrast
measurement timing diagram, and c) fire probability "S-curve" and time-
stamp distributions.

threshold is detected. Fig. 1b illustrates the temporal contrast
step measurement technique [11], [12]. Fig. 1c depicts that at
increasing contrast step, C = [Φ2 − Φ1]/Φ1, a corresponding
increase in event firing probability is observed. The contrast at
which the probability amounts to 50% is termed the Nominal
Contrast Threshold (NCT) [3]. This measure is of relevance
as it indicates the effective contrast threshold of a given pixel
at a given measurement condition. Ideally, the transition from
low firing probability to high firing probability is sharp around
that NCT value. However, temporal noise causes randomness
in trigger probability and results in the shape that coins this
characteristic "S-curve." Clearly, the slope of the S-curve is
important to characterize a pixel. The right part of Fig. 1c
illustrates the event firing time probability distribution. The
firing time has an offset latency µt determined by transients
to charge/discharge nodes in the analog portion of the event
pixel, as well as propagation and scan delays from the digital
peripheral readout. Event pixels exhibit a timing uncertainty σt

which is characterized by electronic noise and randomness in the
peripheral readout. For S-curve characterization, it is preferred to
select a small region of interest to separate the readout delay and
uncertainty from pixel latency. It is clear that merits like NCT
or firing time strongly depend on: radiance, the time interval of
pixel reset and applied scene contrast step, as well as the overall
observation time under which e.g. noise is permitted to elevate
above a contrast threshold. This implies that such merits do not
have full predictive value at operation under varying conditions.
Therefore, a model-based approach is required.

All transistors are assumed to operate in weak inversion and



saturation and are modeled as:

ID = I0 ·
W

L
· exp

(
φG − ζ · φS

ζ · VT

)
(NMOS)

ID = I0 ·
W

L
· exp

(
−φG + ζ · φS

ζ · VT

)
(PMOS), (1)

with drain current ID, specific current I0, width W and length L,
gate and source potentials φG and φS, slope-factor ζ ≈ 1..1.4 and
thermal voltage VT = kB · θ/q at temperature θ, with Boltzmann
constant kB and elementary charge q. The inverting amplifier in
the feedback path of the logarithmic amplifier is modeled by an
affine-linear relation: φG1 = A · [Vx−φS1], with amplifier gain A
and some offset term Vx. With ID1 = IPD the stationary solution
is given by:

t → ∞ ⇒ φG1 =
A · ζ · Vx

ζ +A
·

[
1 + ln

(
IPD

I0 · W1
L1

)]
. (2)

By rearranging ID(t)/ID(t0) one yields:

ID1(t) = ID1(t0) · exp
(
∆φG1(t)

ζ · VT
− ζ · ∆φS1(t)

ζ · VT

)
(3)

= ID1(t0) · exp
(

ζ +A

A · ζ · VT
·∆φG1(t)

)
. (4)

Using Kirchoff’s current law, one can now describe the de-
terministic large-signal circuit behavior through the following
ordinary differential equation:

d∆φFE

dt
+

A · ID(t0)

[1 +A] · CC
· exp

(
ζ +A

A · ζ · VT
·∆φFE(t)

)
=

A

[1 +A] · CC
· IPD. (5)

Similarly, the source follower buffer is modeled by:

d∆φO1

dt
=

1

CLSF
·
[
ISF

−ID2(t0) · exp
(
ζ ·∆φO1(t)

ζ · VT
− ∆φFE(t)

ζ · VT

)]
, (6)

with bias ISF and CLSF being the load seen by the buffer. Note,
that this derivation assumes a PMOS buffer, but the derivation
for an NMOS buffer can be made analogously.

One critical scenario used for characterization is the response
to a temporal contrast change (see Fig. 1b). Using separation of
variables it can be shown that the ODE in Eq. 5 has an analytical
solution. The input signal:

Iphoto(t) =

{
Iphoto-0 for t = t0

Iphoto-1 for t > t0
(7)

corresponds to a linear scene-level temporal contrast step:

Cscene =
Iphoto-1 − Iphoto-0

Iphoto-0
. (8)

Assuming the starting conditions: ID1(t0) = Iphoto(t0) and
∆VFE(t0) = 0, the solution to Eq. 5 is given by:

∆v =
∆VFE

VT · A·ζ
ζ+A

= ln

(
Iphoto-1

Iphoto-0
· 1

1 + Cscene · exp[−[t− t0]/τ ]

)
, (9)

with time-constant:

τ =
1 +A

A
· A · ζ
ζ +A

· VT · CC

Iphoto-1
. (10)

Unfortunately, separation of variables of ODE in Eq. 6 leads
to transcendental terms prohibiting an analytical solution for the
response of VO1 to a temporal contrast step in Iphoto. Furthermore,
Eq. 5 also leads to transcendental terms if driven by other input
signals than contrast steps. Numerical solutions are required. At
low photocurrents, the logarithmic amplifier dominates the pixel
latency and the SF buffer can be approximated by its DC gain
of 1/ζ.

Fig. 2 shows that this model yields a significant matching im-
provement against circuit simulations compared to [10]. Forward-
Euler integration is used to solve the ODEs.

III. SMALL-SIGNAL PIXEL NOISE MODEL

Noise is assumed to be a small-signal phenomenon. Simplified
schematics of the logarithmic amplifier and source-follower and
their small-signal equivalent representations are given in Fig. 3.
Here, channel length modulation is neglected.

For NMOS iD is given by:

iD = gmG · φG + gmS · φS (11)

gmG =
∂ID

∂φG
=

ID

ζ · VT
(12)

gmS =
∂ID

∂φS
= − ID

VT
= −gmG · ζ. (13)

PMOS characteristics can be derived analogously.

1

Figure 2. Evaluation of the transient model.
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Figure 3. Simplified log-amplifier schematic a) and SF schematic b) and
their respective small signal circuits in c) and d), respectively.

It is assumed that Ib ≫ Iphoto such that gmG2 ≫ gmG1. Using
dominant pole approximation1 , φG1 results in:

φG1 =
iPD

gmG1
· 1− jω/z1
[1 + jω/pd1] · [1 + jω/pnd1]

+
ib

gmG2
· 1 + jω/z2
[1 + jω/pd2] · [1 + jω/pnd2]

, (14)

with the zeros z1 = gmG2
CC

and z2 = gmG1·ζ
CC+CPD

, dominant poles
pd1 = pd2 = gmG1

CC
and non-dominant poles pnd1 = pnd2 =

gmG2

CPD·CC+CPD+CL
CC

. With pd1 ≪ pnd1 ≪ z1, the first transfer

function can be approximated simply by neglecting pnd1 and
z1 yielding a single-pole system. As z2 ≪ pd2 ≪ pnd2, the
second transfer function first increases gain between z2 and pd2

and then drops like a single pole system above pnd2. Hence, we
approximate 1+jω/z2

1+jω/pd2
≈ pd2

z2
yielding:

φG ≈
iPD

gmG1
· 1

1 + jωCC/gmG1︸ ︷︷ ︸
=τ1

+
ib

gmG2
· (CC + CPD + CL)/CC

1 + jωCPD · CC + CL

CC
/gmG2︸ ︷︷ ︸

=τ2

. (15)

Analogously, φO1 can be derived to:

φO1 =
1

ζ
·

φFE

1 + jωCLSF/[ζ · gmG]

+
1

ζ · gmG
·

iBSF

1 + jωCLSF/[ζ · gmG]︸ ︷︷ ︸
=τ3

. (16)

Shot noise is considered to be the primary noise source for
a standard pixel under regular operating conditions. In contrast,
flicker noise often is negligible. However, as the power spectral
density of flicker noise scales inversely with transistor size and
for small devices can vary by several orders of magnitude, it
can contribute to noisy pixels. Especially Ib and M2 have to be
designed with care. The goal of this work is to derive a noise
model for a "standard pixel." Thus flicker noise is neglected. For
weak inversion operation in the saturation domain the single-
sided power spectral density is 2qI . M1 exhibits shot noise

1Dominant pole approximation expresses a transfer function by
dominant pd and non-dominant pnd poles: 1

1+jωα+(jω)2·β ≈
1

[1+jω/ppd]·[1+jω/pd]
. With 1

[1+jω/ppd]·[1+jω/pd]
≈

1
1+jω/pd+(jω)2/(ppd·pd)

, pd = 1/α and ppd = α/β results.

of the same magnitude as the photodiode given that they carry
the same current under static operation and both noise sources
share the same transfer characteristic. However, they are assumed
uncorrelated. Similarly, M2 and the bias Ib share the transfer
function and noise magnitude and, again, are uncorrelated. Thus,
the autocorrelation functions of additive noise sources at VFE and
VO1 are:

RFE,FE(∆t) = ζ · kB · θ
CC

· e−
|∆t|
τ1

+ ζ · kB · θ
CPD·CC·[CC+CL]

[CC+CPD]2

· e−
|∆t|
τ2 (17)

and
RO1,O1(∆t) =

kB · θ
CLSF

· e−
|∆t|
τ3 . (18)

IV. AUTOREGRESSIVE MODEL

Fig. 4 illustrates the signal flow used by the presented EVS
model. The photodiode current IPD = Iphoto + Idark is propagated
to VFE using ODE model (Eq. 5) solved using Forward-Euler
integration. Noise is added in a that matches the autocorrelation
function Eq. 17. The superposition of signal and noise is then
fed into the SF-buffer using Eq. 6. Now the noise contribution of
the buffer is added in a way its autocorrelation function matches
Eq. 18. The final result is then used to drive the difference
detecting circuit which is also modeled by a simple differential
equation in order to model signal dependent leak events and
high-pass filter characteristic proposed in [5].
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Figure 4. Pixel model signal flow diagram combining large-signal
deterministic and small-signal noise behavior.

By construction, the noise models Eq. 17 and Eq. 18 describe
single pole characteristics. Using Forward-Euler integration, the
response X of such a system to noise e describes a first-order
autoregressive model [13]:

X(n) = X(n− 1) + [e(n)−X(n− 1)] · ∆t

τ
(19)

= Φ1,1 ·X(n− 1) + f(n), (20)

where τ is the system time constant and ∆t is the Forward-
Euler time-step. e(n) ∼ N (0, σ) is derived from a random
number generator in order to yield a white Gaussian noise
process f(n) ∼ N

(
0, σ · ∆t

τ

)
. Choosing E[X(0)] = 0, it can

be shown that X(n) is wide-sense stationary

⇒ E[X(n)] = 0 (21)

var[X] = Φ2
1,1 · E[X2(n− 1)] + σ2 · [∆t]2

τ2
(22)

⇒ var[X] = σ2 ·
[
∆t
τ

]2
1−

[
1− ∆t

τ

]2 , (23)

with RX,X(n) = Φn
1,1 · σ2

X . Furthermore, we can show that
the autocorrelation function of such an auto-regressive process
RX,X-a.r. converges against the time-continuous RX,X-t.c. model-
ing white noise in first-order low-pass-filter systems:



Figure 5. Sample paths of contrast step response using the deterministic
ODE and the autoregressive noise model.

Figure 6. Comparison of noise-free time-stamp tn.f., median Q50[t(ω)]
and mean µ[t(ω)] vs. contrast (left), and illustration of relative time-
stamp variability σt/Q50[t(ω)] as indicator of confidence (right).

RX,X−t.c.(∆t ·m) = σ2
X · exp

(
−∆t ·m

τ

)
(24)

≈ σ2
X ·
[
1− ∆t

τ

]m
(25)

= σ2
X · Φm

1,1 = RX,X-a.r.(m). (26)

Rearranging Eq. 23 for σ as function of desired σX and τ (cf.
Eq. 17, Eq. 18) and step-size ∆t yields physical noise behavior
of desired magnitude and bandwidth.

V. PARAMETER EXTRACTION AND VALIDATION

Fig. 5 shows Monte-Carlo sample paths as well as a noise-
free solution of the ODE. Fig. 6 makes the crucial observation
that the noise-free time-stamp can be approximated using the
mean or median of the noise-affected time-stamp, provided
the scene contrast is significant enough. This in turn allows
the utilization of time-stamps from contrast step measurements
for model parameter estimation using an optimization approach
p⃗∗ = arg min

p⃗

∥∥t⃗i − tmodel(Iphoto-0, Iphoto-1, p⃗)
∥∥. In the right part

of Fig. 6, it is illustrated that the relative time-stamp variability
σt/median[t(ω)] can be used as indicator of confidence in this
approximation. Thus it can guide the selection of data points
used for model parameter extraction. Three different paths are
conceivable. Firstly, the analytical solution can be utilized for
parameter optimization in a way Monte-Carlo trials can be
omitted (Eq. 9). Rearranging Eq. 9 for the time-stamp at which
events are triggered yields

tevent = τ · ln
(
Cscene · [1 + C∞]

Cscene − C∞

)
, (27)

with C∞ = exp
[

Vthreshold
VT·(1+ζ)·G

]
−1 and G being the difference de-

tector gain and Vthreshold the trigger level of the comparators. tevent

shows a dependency of τ and the characteristic threshold C∞ that
can be interpreted as contrast threshold if the pixel would exhibit

Figure 7. Comparison of measured pixel-level S-curves (top-left) vs.
model (top-right), measured response to sinusoidal stimulus (middle-left)
vs. model (middle-right) and measured response to squarewave stimulus
(bottom-left) vs. model (bottom-right) across a 4.6x radiance, a 7.5x
contrast and a 5x frequency range.

no noise. Combining a set of contrast steps at varying starting
radiance yields independent measurements suitable to extract
both parameters jointly. Secondly, a numerical solution can take
into account the transient impact of MSF. Lastly, to utilize low-
contrast steps, the impact of noise needs to be considered using
the autoregressive model. Note that alternatively to fitting time-
stamps, one can also fit event firing probabilities. However,
here, clearly noise can never be neglected. We measured devices
of [5], extracted parameters, and compared measurements vs.
simulations in Fig. 7 yielding good resemblance.

VI. CONCLUSION

We present a physical model for EVS pixels improving accu-
racy for latency and noise phenomena. We outline three paths for
parameter extraction and demonstrated good model resemblance
to circuit simulations as well as measurements.
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