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 Abstract—This paper presents a 320×232, 6.84μm SPAD 

3D-stacked BSI LiDAR sensor. With a 24dB Time Amplifier 

pre-amplifying the Time-of-Flight and a TDC performing 

phase-revolved conversion, a 3.81ps TDC resolution with [-0.3, 

0.4] DNLs is verified. By utilizing time-correlated single-photon 

counting with the proposed TDC, a 4-bit data compression is 

demonstrated without sacrificing the image quality. The 

prototype depth imager achieves 0.5cm distance accuracy and 

24 frames/s ToF image rate. 
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I. INTRODUCTION 

 Depth imaging using light detection and ranging (LiDAR) 
technology is a key feature in many emerging applications, 
e.g., autonomous driving, industrial modeling, and interactive 
AR/VR systems. Direct time-of-flight (D-ToF) method can 
achieve long-range detection and high frame rates. With 
powerful pulsed laser and 3D-stacked back-side illumination 
(BSI) single-photon avalanche diode (SPAD) technology, low 
system jitter contributed from optics and silicon is achieved. 
To further realize high depth resolution with large image 
format, a highly accurate, parallel time-to-digital converter 
(TDC) is the key component. Flash systems adopt pixel-
parallel or group-parallel TDC to reach high frame rates, 
sacrificing the pixel pitch [1-4], TDC dynamic range and 
uniformity control. Column-parallel TDC configuration is 
suitable for narrow pixel pitch, uniform readout quality and 
practical data throughput. 

The flash TDC structure receives multiple time-resolved 
clock phases from a global delay-locked loop (DLL) block. 
However, the systematic clock skew decreases the TDC 
linearity, and the time resolution is limited by the DLL 
frequency. The conventional D-ToF sensor targets several-
centimeters distance accuracy. Time-correlated single photon 
counting (TCSPC) is utilized to suppress the ambient light 
interference and jitter distribution, at the cost of huge data 
oversampling and histogramming. There is a trade-off 
between TDC dynamic range and the subsequent data 
processing effort. 

In this paper, we propose a column-parallel 24dB time-
amplified and phase-revolved (PR) TDC structure optimized 

for sub-centimeter distance accuracy and data processing 
reduction. Fig. 1 shows the conceptual architecture, composed 
of an optical module with uniformly diffused pulsed laser and 
near Infrared (NIR) lens, a SPAD detector, a front-end time-
amplifier (TA) with 24dB gain, and a latch-based TDC circuit. 
The TDC receives multiple clock phases from the global DLL, 
and the phase orders are revolved per TDC conversion. 
Because of the PR multiplexer, we implemented two modes 
optimized for linearity boost and data compressive. 

II. OPERATION MODES AND PRINCIPLE 

A. Linearity Boost Mode 

In the linearity boost mode (Fig. 2), all the latch cells in 
TDC circuit are enabled. The latches sample the monotonic 
phases from DLL, and reconstruct the latched thermometer 
codes to binary digits. The intrinsic clock skews from M-stage 
DLL delay cells cause the differential non-linearity (DNL) of 
TDC. Then the DLL phase orders are revolved one step in the 
next TDC conversion, results in one digit shift of DNLs. The 
DNLs form a fixed pattern cycle due to the nature of DLL that 
locks the clock in with the clock out of the delay chain. 
Therefore, after M steps revolution, the DNL cycle finishes a 
full round of shifts. Because of the oversampling feature of 
TCSPC, the system collects M multiple times of TDC codes, 
and the DNLs are self-calibrated to zero after histogram 
testing theoretically. 

B. Data Compressive Mode 

In the data compressive mode (Fig. 3a), only one latch cell 
is enabled. The TDC latches only one phase as least significant 
bits (LSBs) part, and truncate the lower log2M bits. Then the 
DLL phase orders are revolved one step at next TDC 
conversion, which results in TDC intervals shifting by one 
phase offset. After M multiple times of TDC codes 
histogramming, a simple average process reconstructs the 
histogram peak as nominal TCSPC. The data compressive 
mode effectively reduces the data throughput without TDC 
LSB codes, and the pre-average process suppresses the front-
end jitter represented as full-width half maximum (FWHM) of 
the histogram (Fig. 3b). The suppression trend follows the 
oversampling theory. By choosing M=16 and adopting an 

 

Figure 1. Concept of proposed LiDAR sensor. 
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averaging process, 4 bits data length is truncated and the 
FWHM is reduced by 4 times. 

III. PROPOSED LIDAR SENSOR CIRCUITS 

 Fig. 4 shows the system block and the key circuit 
component diagrams of this LiDAR sensor. The detector array 
includes 320×232 6.84μm SPADs fabricated in 45nm BSI CIS 
node. With 3D stacked technology, the top layer SPADs are 
pixel-wise bonded with the bottom layer of active quenching 
and re-charging (AQRC) circuits in 22nm logic process. The 
peripheral parts include a column-parallel digital timer co-
operated with AQRC pixel for SPAD hold-time control, a row 
selector for D-ToF line scanning, a column TA to extend the 
succeeding TDC dynamic range, a column PR TDC and 
counter receiving the multiplexed clock phases from global 
PLL and DLL, the column serializer controlled by APR 
processor, and a low-voltage differential signaling (LVDS) 
interface transferring data for off-chip processing. 

A. Active Quenching and Re-Charging 

In the pixel-parallel AQRC (Fig. 5), the effective quench 
resistance is controlled by a quench bias voltage, and the hold-
time is controlled by either the internal switch-capacitance 
integrator or the column AQRC timer. 

 

Figure 3b. Data compressive mode jitter 

 

Figure 4. System block diagram 

 

Figure 5. Pixel-parallel AQRC 

 

Figure 6. Time amplifier 
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Figure 2. Linearity boost modes 

 

Figure 3a. Data compressive mode 
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B. Time Amplifier 

At the initial state of time amplifier (Fig. 6), both VintP and 
VintN are reset to low. Once the INN receives a rising edge first, 
the SWB turn on and VintN start to be integrated by a large 
current. After certain time-of-flight interval, INP is triggered 
to high, controlling both VintP and VintN to be integrated by a 
small current (SWD). VintN reaches the inverter threshold first 
followed by VintP, and the time amplification ratio between 
OUTP/N and INP/N is proportional to the current ratio between 
SWB and SWD. We choose 4×, 8×, 16× gain ratios in this 
design. 

C. Phase-Revolved TDC 

In the proposed PR TDC circuit (Fig. 7), 1GHz differential 
clocks CKINP and CKINN are delayed and locked by the 8-stage 
global DLL block, providing total 16 equivalent delayed 
phases. The 16 phases are multiplexed to each column TDC 
circuit, which includes 16 latch cells as LSBs part and 8-bit 
ripple counters as MSBs part. The latches are event-driven by 
the preceding SPAD event, and the latched thermometer codes 
are combined with MSB parts to form a 12-bit TDC output. 
Two identical TDC circuits per column are used to achieve 
digital corelated double sampling (DCDS) purpose. The 
multiplexed 16 phase orders are revolved according to the 
frame index signal, to realize either linearity boost or data 
compressive functions. 

D. Operation Timing diagram 

Fig. 8 is the timing diagram of the proposed LiDAR sensor 
with TA and PR TDC. The 232 lines are scanned sequentially 
into one frame. In one line period, a LASER pulse is emitted 
and reflected, triggering the SPAD to avalanche at VFD. The 
VFD falling edge enable the hold time control, which limits 
only one pulse within TDC window. A reference LASER 
starts (INN) and the SPAD column-out (INP) inputs to the TA, 
and the time interval is amplified by up to 16× times. The 
amplified signals (OUTP/N) are sent to the TDC. Two input 
signals are converted by dual TDC circuits separately, and 
processes the DCDS result. In mode 1, all the latches are 
enabled, while in mode 2, only the first latch is activated. The 
DLL outputted phase orders are revolved with frame index, 
effectively flattening the clock skew. The TDC 12-bit result is  
then stored into line buffer, and output through LVDS driver 
serially at next line time. 

IV. MEASUREMENT AND SPECIFICATION 

Fig. 9 presents the measurement setup. The LiDAR system 

applies 940nm 100W 20 beam angle pulsed VCSEL diode 
and the sensor part is assembled with F1.4 8mm lens and 
940nm BPF. The in-lab targets under test and environment are 
limited to a range of a few meters. 

A. Linearity Boost Mode 

Fig. 10 shows the characterization result. After the 
proposed PR self-calibration, the DNLs are improved from 
[-0.9, 0.9] to [-0.3, 0.4]. The clock-induced skews are flattened 
and the DNLs are only limited by the clock tree routing 
mismatch. The transfer curves of the proposed TDC without 
and with TA in 4×, 8×, 16× gains are measured. The gain 
slopes follow the TA current design, with saturation levels 
slightly shifted by switch coupling effect. In the ground-truth 
distance measurement, 0.5cm depth accuracy is achieved 
across 100 centimeters measured range. 

 

Figure 7. Phase-revolved TDC 

 

Figure 8. Timing diagram 

 

Figure 9. Measurement setup 

 

Figure 10. TDC characterization, Time-amp linearity, ground-truth 
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B. Data Compressive Mode 

Fig. 11 collects 10000 frames for depth image and 
histogramming demonstration. Comparing to nominal TCSPC 
depth image, the PR TDC reconstruct the 16× (4-bit) data 
compression depth image without sacrificing the image 
quality. 

C. Performance 

The performance compared with state-of-the-arts are listed 
in Fig. 12. The 6.84μm pitch 320×232 LiDAR sensor reaches 
a 3.81ps TDC resolution with [-0.3, 0.4] DNLs by proposed 
time-amplified and phase-revolved functions. Fig. 13 shows 
the micrograph of this 3D stacking LiDAR sensor and the 
performance summary, a total 96dB dynamic range, a 0.5cm 
distance accuracy and 24 frames/s ToF image rate are 
achieved. 

V. CONLUSION 

This 320×232, 6.84μm SPAD 3D-stacked BSI LiDAR 
sensor integrates AQRC circuit, 24dB Time Amplifier and a 
3.81ps resolution with [-0.3, 0.4] DNLs TDC for TCSPC 
operation. The 4-bit data compression depth image is 
demonstrated, and the 0.5cm distance accuracy with 24 
frames/s ToF image rate are measured. The 3D depth model 
presents sub-centimeter depth resolution (Fig. 14). 
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Figure 11. Demo of of TCSPC depth images wo/wi data compression 

 

Figure 12. Comparison table 

 

Figure 13. Chip micrograph and summary 

 

Figure 14. 3D depth model 
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