10-um InGaAsP/InP SPADs for 1064 nm detection
with 36% PDP and 118 ps timing jitter
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Abstract—In this work, we present a family of planar In-
GaAsP/InP SPADs with a diameter of 10 pm targeting
1064 nm wavelength detection. TCAD simulations enabled
the determination of Zn diffusion depths, thereby achieving
low noise and uniform photoresponse. Devices with 1.5-um,
1.3-um, and 0.75-pm multiplication region thicknesses were
fabricated. The device with a 1.5-um multiplication region
demonstrated 53 kcps DCR, 118 ps timing jitter at 5 Ve,
and 36% PDP at 9 V.. The measurements were done from
the backside without a metal reflector, all at 300K. The DCR
was reduced to 14.1 keps at 273K, 5.5 kcps at 253K, and
2.75 keps at 225K at 5 V. The operating frequency can be
increased up to 500 kHz with only 11.8% and to 200 kHz with
5.8% afterpulsing at 300K. The active area scanning results
indicated that the photoresponse is almost flat at and above 5
Vex. Thinner multiplication regions showed higher PDPs and
lower jitter, at a cost of higher noise.

I. INTRODUCTION

Single-photon detection at 1064 nm wavelength is useful
in long-haul light detection and ranging (LiDAR) and in
free-space communications [|1]. Medical applications, such
as time-gated diffuse correlation spectroscopy for blood flow
measurements can also make use of such a detector [2]]. High-
power 1064 nm Nd:YAG lasers enable a variety of similar
experiments and are appealing to diversify the applications.
Since the photon detection probability (PDP) of CMOS-
based SPADs reduces towards near-infrared (NIR) due to the
low silicon absorption coefficient, superconducting nanowire
single-photon detectors (SNSPDs) and InGaAsP/InP single-
photon avalanche diodes (SPADs) have emerged as the best
alternatives to develop single-photon cameras operating at
1064 nm. However, InGaAsP/InP SPADs perform well at
much higher temperatures than SNSPDs, and even at room
temperature, enabling scalable and compact solutions that are
cost-effective as well.

II. RESULTS

SPADs utilize a separate absorption-charge-multiplication
(SACM) structure and the double zinc (Zn) diffusion technique
to form the multiplication and guard ring (GR) regions (Fig.
[I). The n-contact was carried to the top surface, allowing to
illuminate SPADs from the backside. The absorber thickness
is 1 um, and the charge layer doping is larger than 2x 10"
cm™ to keep the electric field sufficient to deplete the absorber
before breakdown is reached (Fig. E]) We designed, fabricated,
and fully characterized 10-um diameter SPADs with 1.5-
pm, 1.3-pm, and 0.75-pm multiplication region thickness.

According to avalanche breakdown probability simulations
in TCAD, a 0.5-um depth difference between shallow and
deep Zn diffusions was the preferred solution. This could
potentially provide lower noise at the cost of a less uniform
photoresponse over the active area (Fig. [3). The SEM image
of the fabricated device with a 1.3-um multiplication region
prove that the Zn diffusion depths are close to the planned
values (Fig. ). The measured I-V curves at 300K indicate
the avalanche breakdown and punch-through voltages for each
device (Fig. E]) In the remaining measurements, the SPADs
were operated in time-gating mode with 50 k{2 ballast resistor
and a 100 ns gate-on time. The gating frequency sweep of
each device showed that devices can be operated up to 500
kHz with low afterpulsing probability (APP) at 300K (Fig. [6).
With 10 kHz gating, a median DCR of 53 kcps was obtained
with a multiplication region thickness of 1.5-um, 302 kcps
with 1.3 um, and 2130 kcps with 0.75 um, where the DCR
was normalized with gate-on time. The median DCR was
reduced to 14.1 kcps at 273K, 5.5 kcps at 253K, and 2.75
keps at 225K, for a 1.5-um multiplication region at 5 Vg
(Fig. [7). Active area scanning was performed with a 1060
nm pulsed laser, demonstrating that the response difference
between the edge and center of the active region becomes
smaller when increasing V¢, and that a uniform response
can be achieved at and above 5 V. (Fig. [§). The PDP
obtained with a monochromator and wide-spectrum lamp at
1060 nm and 5 Vg was 19.5% for 1.5-uym multiplication
region thickness, 20.4% for 1.3 pm, and 21.5% for 0.75 pm
(Fig.[9). A high PDP of 36% at 9 V. was achieved with a 1.5-
um multiplication. Inter-arrival avalanche histograms indicated
that APPs of only 11.1% and 5.8% can be achieved at 500 kHz
and 200 kHz gating and 300K, respectively (Fig. [I0). The
timing jitter was acquired via time-correlated single-photon
counting (TCSPC), yielding as 118.4 ps, 110 ps, and 84 ps
(FWHM) after deconvolution (Fig. [TT). The comparison with
state-of-the-art InGaAsP SPADs shows that fabricated devices
achieved the smallest sizes, with high PDP, and low timing
jitter (Fig. [I2)), while further optimization is to be expected.
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Fig. 4: SEM image belonging to a device with a 1.3-um
multiplication region.
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Fig. 5: I-V characteristics of the devices with (a) 1.5-um, (b)
1.3-um, and (c) 0.75-pm multiplication regions at 300K.

Fig. 2: Electric field simulations in TCAD at 300K.
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Fig. 7. DCR measurements of the devices with (a) 1.5-um,  a¢ various temperatures and gating frequencies with 100 ns
(b) 1.3-um, and (c) 0.75-um multiplication regions with 10 sae_on time.

kHz gating and 100 ns gate-on time. Note: Three devices (S1,
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Fig. 8: Active area scanning of the SPAD with a 1.3-um (b) (c)
multiplication region from the (a) side and (b) top view by

utilizing a 1060 nm pulsed laser at 300K. Fig. 11: Timing jitter measurements of the devices with (a)

1.5-um, (b) 1.3-pum, and (c) 0.75-um multiplication regions at
300K.
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Fig. 9: PDP measurements of the devices with (a) 1.5-um, (b) " "
1.3-um, and (c) 0.75-um multiplication regions at 300K and Fig. 12: Comparison of the developed SPADs with the state-

with 10 kHz gating and 100 ns gate-on time. of-the-art InGaAsP SPADs targeting 1064 nm detection.
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