List of Posters

Greyed out posters are not available.

Poster Session 1

P1.01	H.S. Choi, et al. A Guard Ring-Optimized Single-Photon Avalanche Diode with
	70% PDP at 420 nm in 55 nm BCD Technology.
P1.02	D. Eom, et al. Back-Illuminated Non-Isolated Single-Photon Avalanche Diode
	in 110 nm Standard CMOS Image Sensor Technology.
P1.03	P. Rustige, et al. Room temperature 96x96 InGaAs/InP SPAD array for SWIR
	imaging.
P1.04	J. Kölbel, et al. New Crosstalk Insight and Characterization Methods in
	CMOS based SPADs.
P1.05	J.H. Kim, et al. Test Bench for Characterization of CMOS SPADs.
P1.06	C. Guerrisi, et al. Radiation Damage on SiPM for High Energy Physics
	Experiments in space missions.
P1.07	J. Dalmasson, et al. Glass-free SiPMs with Through Silicon Vias for
	VUV/NUV light detection.
P1.08	C. Alispach, et al. Position-Sensitive Silicon Photomultiplier Array with
	enhanced position reconstruciton by means of a Deep Neural Network.
P1.09	Y. Tashiro, et al. Fabrication method of SPAD sensor for automotive LiDAR
	to compensate the process fluctuation by feedforward system.
P1.10	M Wojtkiewicz. Extended Dynamic Range SPAD Front-End Using Near-
	Threshold Inverter-Based Comparator.
P1.11	F. Liu, et al. A 1.8-µm pitch, 47-ps jitter SPAD Array in 130nm SiGe BiCMOS
	Process.
P1.12	T. Milanese, et al. Histogram-less SPAD/SiPM-based dTOF imaging with
	parallel ML processing.
P1.13	A. Tontini, et al. Linearized SPAD response for high photon flux and
	histogram-less d-ToF systems.
P1.14	N. Di Giano, et al. Towards arbitrary photon statistics characterization with
	realistic SPAD arrays.
P1.15	H. Galante, et al. Count-Free Single-Photon LiDAR with Equi-Depth
	Histograms: An FPGA Implementation.
P1.16	E. Bosch, et al. Flash LiDAR for Bathymetry Using a 2D SPAD Array.
P1.17	H. Haka, et al. 40-nm SPAD-Array System for Ultra-Fast Raman
	Spectroscopy.
P1.18	K. lizuka, et al. Fluorescence Based Multi-Color Two-Dimensional Flow
	Cytometer Utilizing Masked SPAD Array.
P1.19	F. Retiere, et al. The Single Particle Avalanche Diode concept.
P1.20	P. Ulpiani, et al. Al-enhanced Non-Line of Sight Imaging.

Poster Session 2

P2.01	EJ. Kim, et al. An Optimized SPAD Equivalent-Circuit Model.
P2.02	P. Ulpiani, et al. Al-enhanced Non-Line of Sight Imaging.
P2.03	S. Virzì, et al. SPAD traceable detection efficiency measurement at INRIM.
P2.04	L. Arabskyj, et al. Traceable characterisation of free-space and fibre-coupled
	single-photon avalanche diodes.
P2.05	F. Calmon, DT. Vu, et al. <i>Front-Side Photon Detection improvement of SPAD</i>
	integrated in FD-SOI CMOS Technology thanks to STI patterning.
P2.06	S. Yook, et al. NIR–Sensitivity Enhancement of a Back-Illuminated Single-
	Photon Avalanche Diode Through Backside Scattering Patterns.
P2.07	A. Wörl, et al. Investigation of a novel zinc-diffusion process for the
	fabrication of InGaAs/InP single-photon avalanche diodes.
P2.08	T. Leitner, et al. A Backside-Illuminated SiPM Array with High NIR PDE for
	Automotive LIDAR Applications.
P2.09	F. Vachon, et al. Photon-to-Digital Converter Development: 3D Integration
	Progress and Characterization Platform.
P2.10	S. Farina, et al. Conceiving and designing high-performance TCSPC systems
	for biological and quantum imaging.
P2.11	G. Acconcia, et al. Beyond pile-up limits in Time Correlated Single Photon
	Counting: a New Approach.
P2.12	Y. Liu, et al. An Asynchronous Peak Tracking Method for dToF LiDAR
50.10	Histograms.
P2.13	M. Kuijk, et al. Use of Switched Capacitors in timing-based SPAD Image
50.1.4	Sensors.
P2.14	A. Morsy, et al. Utilizing Switched Capacitors in SPAD-Based Pixel for dToF.
P2.15	A. Henschke, et al. SPAD LIDAR with RADAR Target Prediction.
P2.16	J. Nedbal, et al. Fluorescence Lifetime Imaging Ophthalmoscope: A
D0 4 T	Theoretical Study.
P2.17	A. Carimatto, et al. Red-Enhanced SPAD Sensor with 150-ps Gating for FLIM.
P2.18	A. Elsenhans, et al. ANDESPix: A Digital SiPM for Muon Detectors.
P2.19	S. Bauer, et al. Ubiquitous Perception with Single-Photon Cameras.
P2.20	A. Kutcsak, et al. Clinical translation of an early-photon imaging system for
	sate placement of feeding tubes.