Back-Illuminated Non-Isolated Single-Photon Avalanche Diode in Foundry CMOS Technology

Doyoon Eom^{1,2}, Hyun-Seung Choi^{1,2}, Woo-Young Choi^{2*}, and Myung-Jae Lee^{1**}

¹Post-Silicon Semiconductor Institute, Korea Institute of Science and Technology, Seoul, Korea ²Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Korea

*wchoi@yonsei.ac.kr, **mj.lee@kist.re.kr

SPAD Applications

Korea Institute of Science and Technology

Results

600

Conclusion

 The proposed BI non-isolated SPAD with backside patterning achieves a ~50% higher PDP at 940nm than

the default SPAD while it shows a comparable DCR.

- The PDP will be improved by increasing the thickness of the P-Epi.
- It is expected to play an important role in biomedical and LiDAR applications.

700 800 900 Wavelength (nm) Performance summary w/o BSP w/BSP Active area 10µm Breakdown voltage **30V Excess voltage 3V** DCR (cps / µm²) 0.34 0.64 **940nm PDP** 10.7% 16%