

THE UNIVERSITY of EDINBURGH Institute for Integrated Micro and Nano Systems

P1.10

Extended Dynamic Range SPAD Front-End Using Near-Threshold Inverter-Based Comparator

Maciej Wojtkiewicz¹, Bruce Rae², Robert K Henderson¹

¹The University of Edinburgh ²STMicroelectronics, Imaging Division, Edinburgh

Motivation: Outdoor LIDAR

• SPAD-based pixels can time single photons with picosecond

Problem: SPAD Paralysis

Transient Signal at the Inverter Input

- precision, which is appealing for time-of-flight systems [1], [2].
- In automotive LIDAR tolerance of high solar background is critical.
- At high illumination levels SPAD pixels easily saturate, especially when the diode is used in the RC-coupled arrangement.
- Near device paralysis there is still an output form the SPAD, but the pulse amplitude is too small to trigger the inverter.
- Comparators have been proposed to pick up low swing SPAD events to improve jitter [3], however here we recognise that they are also able to extend dynamic range by detecting smaller amplitude pulses occurring near saturation. However, normally they are area and power-hungry blocks difficult to integrate in pixel arrays.

Solution: HDR SPAD Front-End

Execution: Test Chip

• Instead of biasing the inverter input to VDD, VPULLUP is chosen at different levels to tune the sensitivity of the input inverter to the small voltage excursions, optimize

- Test pixels Other test structures small array
- Tapeout in ST's 3D40 SPAD stacked process. • Contains many standalone SPAD pixels, small array and other test circuits.

the DC current, and ENABLE thin-oxide transistors prevent any noise at Vin to trigger 'false' top tier wafer bottom tier wafer **GND** photon counts.

Characterization Results

State-of-the-Art

Parameter	This work	B. Mamdy [4]	K. Ito [5]	S. Shimada [6]	G. Roehrer [7], P. Taloud [8]
Technology (top/bottom tier)	90nm BSI/40nm	90nm BSI/40nm	90nm BSI/40 nm	90nm BSI/22nm	45 nm BSI/22nm
Pixel pitch [µm]	10.17/4.1*	10.17	10.00	6.00	10.00
Fill factor [%]	~100	~100	~100	~100	N/A
Dynamic range [dB]	87	100	144	130	157
Max. count rate [Mcps]	167/141**	85	50	60	53
Peak PDE [%]	51.5 (@570 nm)	40.8 (@635 nm)	53.5 (@650 nm)	66.7 (@650 nm)	N/A
PDE@940nm [%]	14.4	18.5	14.2	20.2	11
DCR [cps/pix]	7934 (@27°C)	810 (@60°C)	3 (@25°C)	19 (@25°C)	0.7 (@25°C)
Timing iitter FWHM	419				120

 Different sensitivity modes achievable with one front-end via VPULLUP and VHV adjustments.

* Pitch of the pixel fronted circuit on the bottom tier wafer. ** Low-sensitivity mode/high-sensitivity mode.

References and Acknowledgements

[1] O. Kumagai et al., "A 189 × 600 Back-Illuminated Stacked SPAD Direct Time-of-Flight Depth Sensor for Automotive LiDAR Systems," IEEE ISSCC 2021.

[2] P. Padmanabhan et al., "A 256×128 3D-Stacked (45nm) SPAD FLASH LiDAR with 7-Level Coincidence Detection and Progressive Gating for 100m Range and 10klux Background Light," IEEE ISSCC 2021.

[3] A. Gulinatti et al., "35 ps time resolution at room temperature with large area single photon avalanche diodes," IET Electronic Letters, vol. 41, no. 5, pp. 272–274, Mar. 2005.

[4] B. Mamdy et al., "A high PDE and high maximum count rate and low power consumption 3D-stacked SPAD device for Lidar applications," IISW 2023.

[5] K. Ito et al., "A Back Illuminated 10µm SPAD Pixel Array Comprising Full Trench," IEEE IEDM 2020.

[6] S. Shimada et al., "A Back Illuminated 6 µm SPAD Pixel Array with High PDE and Timing Jitter Performance," IEEE IEDM 2021.

[7] G. Roehrer et al., "A Back Side Illuminated 3D-Stacked SPAD in 45nm Technology," ISSW 2022

[8] P. Taloud et al., "A 1.2K dots dToF 3D Imaging System in 45/22nm 3D-stacked BSI SPAD CMOS," ISSW 2022.

This work is funded and supported by STMicroelectronics Imaging Division, 1 Tanfield, Inverleith Row, Edinburgh EH3 5DA, UK.