

TCAD simulation of the inefficiency of a Single Electron Bipolar Avalanche Transistor (SEBAT) coupled to a THz detector

JNIVERSITY OF TRENTO

BOUGHEDDA Abderrezak^{a,b}, Daniele Perenzoni^c, Luca Parmesan^b, Leonardo Gasparini^b, Gabriele Quarta^c, Matteo Perenzoni^c, and Lucio Pancheri^a. ^aUniversità degli Studi di Trento, Trento, Italy ^bFondazione Bruno Kessler, Trento, Italy ^cSony Europe Technology Development Centre, Trento, Italy

SONY

) ()

0

Ct

FET-based terahertz Detection

Challenges of THz Detection

Large area requirements High power consumption Complex interface electronics

CMOS FET THz Detectors

NMOS transistor with integrated antenna

Compact, low-power solution Requires high-gain amplification

THz Pixel - SEBAT-based Detector

SEBAT Device Structure

Similar to SPAD with injector layer Base-collector junction in Geiger mode Avalanche pulses from injected electrons

Advantages of SEBAT

Single-electron sensitivity Direct digital output Low noise, internal amplification

Integration with FET Detector

SEBAT amplifies FET's small THz signal Avalanche pulse rate varies with THz radiation intensity

SEBAT challenges

SEBAT efficiency :

TCAD Simulation and Analysis

Basic mechanism: during the avalanche pulse, due to the total base resistance (semiconductor + contact + metal), the **n+/Pwell junction forward bias is increased** for a small amount of time

ratio of avalanche pulse rate to injected electron rate.

Theoretical efficiency:

limited by avalanche triggering probability

Measured efficiency

~0.0001 (0.01%). SEBAT

- Understanding the source of the inefficiency using TCAD simulation and make the device more efficient.
- Identify any areas where improvements can be made to optimize its efficiency.

Injector Current Pulse Analysis

- Pulse height and duration increase with capacitance and the base resistance.
- Small capacitance leads to small integrated charge.

Proposed Solutions

resistance.

Reduce the base parasitic

• Use integrated resistor to the

collector in order to reduce

Conclusion and perspective

bias

- SEBAT is a promising device enabling the readout of small current signals (e.g., Antenna-coupled FET detectors).
- SEBAT structures were fabricated, but they show poor efficiency due to the base resistance and the parasitic capacitance at the Cathode .
- Issue investigated through TCAD sims and solution identified.
- Design under fabrication to verify the hypothesis of inefficiencies.