

Al-enhanced Non-Line of Sight Imaging

<u>Pierfrancesco Ulpiani¹, Massimiliano Proietti¹, Luigi Sabetta¹, Lorenzo Francesco Livi², Ugo Zanforlin¹,</u> **Riccardo Romanelli³ e Massimiliano Dispenza¹**

¹ Leonardo Labs, Quantum Technologies Lab, Via Tiburtina, km 12,400 - Rome - 00131 – Italy

²Leonardo Electronics Division, Via Delle Officine Galileo 1, Campi Bisenzio - 50013 – Italy

³ Dipartimento Interateneo di Fisica, Università degli Studi di Bari, I-70126 Bari, Italy

INTRODUCTION

Non-line-of-sight (NLOS) imaging has demonstrated¹ to overtake the restrictions of modern 3D active imaging systems that relay on the direct line of sight of the transceiver unit and the target.

EXPERIMENTAL RESULTS

Of all the existing reconstruction algorithms, **f-k migration** technique was selected benchmarking its performance against a known target for different raster scanning

In this sense, the presence of an eventual occluder in the scene is circumvented through te proposed single-photon technique, where pulsed light is initially directed to an intermerdiate scattering wall (relay wall), in order to probe the entire hidden

resolutions.

Reconstructed image of 3D scene

Front view for different scanning resolutions

The reconstruction method can also be used to take a **4Hz clip** of a moving target.

A 3D temporal histogram tensor (called transient image) is obtained by raster scanning calibrated grids of different sizes on the relay wall. Finally, a backpropagation algoritm is used to reveal the 3D shape and visual appearance of the unknown scene.

APPLICATIONS

NLOS imaging promises to be a disruptive technology in many defence and security scenarios of interest for Leonardo.

AI APPLIED TO NON-LINE-OF-SIGHT IMAGING

A significant challenge with our current methodology is the extensive acquisition time needed for capturing transient images at high scanning resolutions. To address this, we propose an innovative solution: leveraging a **Convolutional Neural Network** (CNN) to enhance image resolution efficiently. Instead of directly acquiring highresolution images, we initially capture images at a lower resolution (for instance, 32x32). This low-resolution image is then fed into the CNN, which elevates its resolution to a finer scale (e.g., 256x256). Following this upscaling, we apply the f-k migration process.

The network includes a series of deconvolutions to increase the resolution of the input transient image. It has been trained on a set of simulated data (specifically bikes) composed by ~3000 256x256 images which are downscaled to obtain the low-resolution/high-resolution pairs. The model is then tested on experimental data (the USAF target). Initial outcomes from this testing phase are promising, indicating the model's potential efficacy in practical applications.

REFERENCES

[1] Velten, A. et al., "Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging", Nat. Comm. 3, (2012).

[2] Liu X, et al., "Analysis of Feature Visibility in Non-Line-of-Sight Measurement", IEEE/CVF, (2019).

Reconstructed images

32x32 input

Augmented input

Target

CONTACT

Pierfrancesco Ulpiani Researcher Leonardo SpA, Leonardo Labs

Via Tiburtina, km 12,400 - Rome - 00131 pierfrancesco.ulpiani@leonardo.com