

Si-SPAD quantum efficiency calibration

<u>Salvatore Virzì</u>¹, Elisa Redolfi^{1,2,3}, Alice Meda¹, Giorgio Brida¹, Marco Gramegna¹, Ivo Degiovanni^{1,3} and Marco Genovese^{1,3}

¹ Istituto Nazionale di Ricerca Metrologica (INRiM), Torino, Italy

² Università di Torino, Torino, Italy

Introduction

³ Istituto Nazionale di Fisica Nucleare (INFN), Torino, Italy

The Device Under Test (DUT) detection efficiency η_{DUT} is estimated by comparing the optical power, corresponding to the effective number of photons per second registered by the SPAD detector, with the incident mean optical power, SI-traceable measured by a reference detector (substitution method [1,2]).

Efficiency measurement

The DUT detection efficiency at different count rates has been measured at 850 nm.

From the linear regression the detection efficiency results: $\eta_0 = (0.544 \pm 0.003)$

η_0 uncertainty budget

Measurand	Symbol	Туре	Value	Standard Uncertainty	Contribution* (%)
DUT counts	N′	A	20655	27	61.87
DUT environmental counts	N _{env}	A	28	1	0.14
Si-photodiode current [A]	A'	A	$1.92807 \cdot 10^{-8}$	$4.9 \cdot 10^{-12}$	0.68
Si-photodiode environmental current [A]	A _{env}	A	$4.88 \cdot 10^{-14}$	$1.3 \cdot 10^{-15}$	$1.7 \cdot 10^{-7}$
Wavelength [nm]	λ	В	850.711	0.006	$6 \cdot 10^{-5}$
Acquisition time [s]	t	В	1	10 ⁻³	1.22
Sensitivity	S	В	0.4766	0.0019	19.45
Attenuation factor	τ	В	$2.1601 \cdot 10^{-7}$	$7.0 \cdot 10^{-10}$	12.77
Current meter calibration factor	С	В	1.000023	$1.0 \cdot 10^{-5}$	$1.0 \cdot 10^{-3}$
Focusing lens transmittance	Т	В	0.985000	$3.0 \cdot 10^{-5}$	3.0 · 10 ⁻³

*The contribution of each measurand is obtained considering the variance. The correlation contribution is not taken into account in this table

Spectral characterization

The quartz window placed before the DUT active area induces an efficiency variation:

With this apparatus, we obtained good repeatability.

References

[1] M. López, H. Hofer & S. Kück, Detection efficiency calibration of single-photon silicon avalanche photodiodes traceable using double attenuator technique, Journal of Modern Optics 62, 1732-1738 (2015)

[2] M. López, A. Meda, et al., A study to develop a robust method for measuring the detection efficiency of free-running InGaAs/InP singlephoton detectors, EPJ Quantum Technol. 7, 14 (2020)

x[mm]

Conclusions

- Metrological characterization of free-space Si-SPADs at the INRiM facility
- Innovative automated setup to estimate the quantum efficiency η_0 of commercial Si-SPADs at a fixed wavelength with standard uncertainty less than 1 %, exploiting the double attenuator technique
- Evaluation of the effect induced by the quartz window on the DUT efficiency

