P2-05 - International SPAD Sensor Workshop 2024, June 3-6, 2024 - Trento, Italy

Front-side photon detection improvement of SPAD integrated in FD-SOI CMOS Technology thanks to STI patterning

D.-T. Vu¹, S. Gao¹, T. Cazimajou¹, P. Pittet¹, M. Le Berre¹, M. Dolatpoor Lakeh², F. Mandorlo¹, R. Orobtchouk¹, J.-B. Kammerrer², A. Cathelin³, D. Golanski³, W. Uhring², F. Calmon^{1*}

¹ Univ Lyon, INSA Lyon, CNRS, Ecole Centrale de Lyon, Université Claude Bernard Lyon 1, CPE Lyon, INL, UMR5270, 69621 Villeurbanne, France,² ICube, University of Strasbourg, UMR CNRS 7357, Strasbourg, France ³ STMicroelectronics, Crolles, France. ^{*} Contact author : Francis Calmon, <u>francis.calmon@insa-lyon.fr</u>, phone: +33 472 436 159

Context

- > SPAD integrated in CMOS FDSOI 28nm
- ➢ PDP improvement → Nanostructuration of STI
- Test chip designed and fabricated

STI patterning simulation

Cartography of photogeneration rate on periodic pattern for FF = 15%and period = $0.48 \mu m$

- Electro-optical simulation with Matlab post-processing
- > Optimization of squared STI pattern
 - Fill Factor (FF) \rightarrow Anti reflection
 - Period \rightarrow Constructive interferences in space charge region
 - \rightarrow FF = 25% and 15%, period = 480nm

Experimental results

DCR measurements of patterned and reference SPAD

PDP measurements of patterned SPAD with FF = 15%

- reference and patterned SPAD

1000

1/kT (eV⁻¹) 1/kT (eV⁻¹)

(a) Reference SPAD

(b) Patterned SPAD with FF=15% Arrhenius plot of measured DCR

References

- [1] T. Chaves de Albuquerque et al. "Integration of SPAD in 28nm FDSOI CMOS technology," ESSDERC 2018 (http://dx.doi.org/10.1109/ESSDERC.2018.8486852).
- [2] M. Dolatpoor Lakeh et al. "Integration of an Ultra-Fast Active Quenching Circuit with a Monolithic 3D SPAD Pixel in a 28 nm FD-SOI CMOS Technology" Sensors and Actuators: A. Physical, Volume 363, 1 December 2023, 114744 (https://doi.org/10.1016/j.sna.2023.114744).
- [3] D. Issartel et al. "Architecture optimization of SPAD integrated in 28 nm FD-SOI CMOS technology to reduce the DCR," Solid-State Electronics, Elsevier, Volume 191, April 2022, p. 108297 (https://doi.org/10.1016/j.sse.2022.108297).
- [4] S. Gao et al. "Correlations between DCR and PDP of SPAD integrated in a 28 nm FD-SOI CMOS Technology" IISW 2023, available online: https://imagesensors.org/.
- [5] S. Gao et al. "3D Electro-optical Simulations for Improving the Photon Detection Probability of SPAD Implemented in FD-SOI CMOS Technology" SISPAD conference, 27-29 Sept. 2021: (https://doi.org/10.1109/SISPAD54002.2021.9592555)

	sensitivity (λ ~ 645nm)	range [400nm - 1000nm]
FF = 15%	28% @ V _{ex} =0.4V	33% @ V _{ex} = 0.4V
	62% @ V _{ex} = 0.5V	55% @ V_{ex} = 0.5V
<i>FF</i> = 25%	23% @ V _{ex} = 0.5V	$12\% @ V_{ex} = 0.5V$
	65% @ V _{ex} =0.6V	53% @ V_{ex} = 0.6V
	131% @ V _{ex} = 0.7V	116% @ $V_{ex} = 0.7V$

PDP improvement thanks to STI patterning

> Up to 116% average PDP improvement with similar DCR level

