An Asynchronous Peak Tracking Method for dToF LiDAR Histograms

THE UNIVERSITY of EDINBURGH Institute for Integrated Micro and Nano Systems

Yiyang Liu, Germán Mora-Martín, Istvan Gyongy, Robert Henderson Institute of Micro and Nano Systems, School of Engineering, the University of Edinburgh, Scotland, UK

Introduction

Direct Time of Flight (dToF) Light Detection and Ranging (LiDAR) systems are used to measure the depth of an object in the scene from the LiDAR sensor.

A laser in the system outputs a pulse of light which is reflected after hitting the object.

The depth of the object is calculated using the time between the emission and the reflection τ and the speed of light c.

Problem Statement

Histogram Bins

- The histogram takes multiple laser pulse cycles, it requires ~1ms to build a single histogram.
- However, if any object inside the scene is moved, the histogram will have multiple laser profiles stored inside. (Pix1)
- Then during the post-processing, the peaktracking algorithm won't be able to provide information fast enough.

Modelling

- A dToF SPAD based LiDAR system is modelled in MATLAB to study this problem
- This Model Contains 3 parts: Optical Model, SPAD Device Model, and Peak Tracking Model

Mathematical Derivation in Peak Detection

- $V(t_i) \in Amb \sim Poisson(BG)$
- $E(V(t_i)) = BG, D(V(t_i)) = BG$
- $V(t_i) \in Amb \sim N(BG, \sqrt{BG})$, according to CLT
- For Effective Peaks, Peak Detected at Bin $t_i \leftarrow V(t_i) > 1$ $BG + n \times \sqrt{BG}$

Where n is the adjustable threshold, BG means Background, and $V(t_i)$ is the photon counts in histogram bin t_i .

Next Step

- Use one of the LiDAR setups existing in the CSS group to acquire histograms.
- Implement the proposed dynamic peak detection on FPGA.
- Evaluate the proposed method and compare to the existing frame-based method.

Inspiration

- Dynamic Vision Sensor (DVS) is a kind of imager which outputs only the change in light intensity that happens within an individual pixel.
- Instead of reading out the whole frame, DVS only reports the pixel with changes detected, thus the readout time is compressed. Therefore, it has a higher frame rate compared to standard cameras.
- Therefore, one of the usage of this kind of sensor is to deblur images taken by standard cameras.

Solution

- Similar to DVS, we propose to modify LiDAR sensors' output to an event-based scheme rather than frame-based scheme.
- However, since LiDAR sensors provide depth data instead of light intensity data, the "change in light intensity" in DVS becomes "change in depth detection" in dynamic-LiDAR.
- Therefore, similar to DVS, Dynamic-LiDAR will be able to provide higher data rate to cope with motion artefacts.

Proposed Dynamic Peak Detection Circuit Architecture

Report Peak 2

2014.

Peaknum=1?