

ANDESPix: A Digital SiPM for Muon Detectors ISSW 2024, June 4-6 (P2.18)

A. F. Elsenhans¹, F. Alcalde Bessia², A. E. Fuster³, M. R. Hampel³, J. Lipovetzky⁴, M. Platino³ and I. Peric¹

¹ Institute for Data Processing and Electronics - KIT-ADL (ASIC and Detector Laboratory), KIT, Karlsruhe, Germany

² Instituto Balseiro/Instituto de Nanociencia y Nanotecnología, Bariloche, Argentina

³ Instituto de Tecnologías en Detección y Astropartículas (ITeDA), Buenos Aires, Argentina

⁴ Instituto Balseiro/CONICET/CNEA, Bariloche, Argentina

Muon Detector

ANDESPix

- Muon generates photons (410 nm/blue) in scintillator
- Photons are absorbed (+re-emitted at 485 nm) (green)) by wavelength shifting (WLS) fiber and detected by SiPM
- Improve detector with better time resolution of SiPM
 - Detect position of impinging muon by measuring the arrival time of each single photon individually
 - Time-of-flight measurements by double-sided fiber readout

ANDESPix

- Digital SiPM [4] with one time-to-digital converter (TDC) per microcell
- Technology: LFoundry 110 nm incl. SPAD addon
- Goal: 100 ps time resolution and high photondetection efficiency (PDE)
- Pixel matrix can host two scintillating fibers, each producing <50 photons/muon

by FBK

Overview of ANDESPix

- DACs to control SPAD bias and quenching time
- Zero-suppressed priority logic readout with hitbuffers and end of column (EoC) buffers
- Different readout modes possible
 - Asynchronous mode: read all hits all the time
 - Synchronous mode: read a certain amount of hits in a certain time frame, discard remaining
 - Self-triggered mode: only read data if internal threshold number of columns with hits is passed/

References

[1] X. Bertou, "The ANDES Deep Underground Laboratory," Sci. Rev. - End World, vol. 1, no. 4, Art. no. 4, Sep. 2020, doi: 10.52712/sciencereviews.v1i4.24.

[2] A. Aab et al., "Design, upgrade and characterization of the silicon photomultiplier front-end for the AMIGA detector at the Pierre Auger Observatory," J. Inst., vol. 16, no. 01, pp. P01026, Jan. 2021, doi: 10.1088/1748-0221/16/01/P01026. [3] A. Aab et al., "Muon counting using silicon photomultipliers in the AMIGA detector of the Pierre Auger observatory," J. Inst., vol. 12, no.03, pp. P03002–P03002, Mar. 2017, doi: 10.1088/1748-0221/12/03/P03002.

[4] T. Frach, G. Prescher, C. Degenhardt, R. de Gruyter, A. Schmitz, and R. Ballizany, "The digital silicon photomultiplier — Principle of operation and intrinsic detector performance," in 2009 IEEE Nuclear Science Symposium Conference Record (NSS/MIC), Oct. 2009, pp. 1959–1965. doi: 10.1109/NSSMIC.2009.5402143.

KIT – The Research University in the Helmholtz Association

Email: alexander.elsenhans@kit.edu

