SONY

Recent advances in SPAD sensor technology: Pixel size shrinking and PDE enhancement

4th June, 2024. International SPAD sensor workshop Jun Ogi, Sony Semiconductor Solutions Corporation

Copyright 2024 Sony Semiconductor Solutions Corporation

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μ m
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

Pixel size reduction

- The SPAD pixel size has been reduced to improve the SPAD sensors performances.
- Back-illuminated and stacked technology is mainly applied in the last 3 years.

Impact of pixel size reduction

- A small pixel pitch is essential to increase the resolution
- The small pixel also contributes to detect high photon flux

Back-illuminated SPAD stacked with pixel-front-end circuits

• Back-illuminated SPAD pixel and 3D stacking of pixel-front-end circuit allows high-sensitivity and small pixel pitch.

SONY 6/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Recent advances in the pixel size reduction

- The pixel size has been reduced less than 3 µm
- Near infrared PDE is improved with 6-µm-pitch pixel

Outline

- **1.** Pixel size reduction in SPAD sensor development
- **2.** Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

Layout optimization

• To prevent premature edge breakdown, we combined layout design optimization and smaller avalanche region to increase the GR width.

The multiplication design

• The optimal point B was applied to avoid premature edge breakdown

SPAD pixel structures

• Cross-section of the scaled down pixels with optimized avalanche region, and Gapless OCL for PDE enhancement.

Dark count rate

• 3.3, 3.0µm pixels DCR improvement over the 6µm pixel is attributed to the avalanche region design optimization.

PDE as function of pixel pitch

• The scaled down pixels achieve higher PDE than the 6µm reference in terms of both, NIR and Peak PDE in the visible region.

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

PDE enhancement with dual diffraction structure

- 1. pyramid surface for diffraction (PSD) on incident surface
- 2. shallow trench for diffraction (STD) on opposite surface

• Dual diffraction structure increase optical path in the pixel.

[10] Y. Fujisaki et al., VLSI 2023

Shallow Trench for Diffraction (STD)

• Shallow trench diffraction is used for the diffraction structure on the front-side of the pixel and the design is optimized to reduce DCR.

2×2 On-Chip Lens

• Single OCL cannot focus on the STD.

• 2x2 OCL per pixel is used to increase the scattering effect.

SONY 17/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Full Trench Isolation (FTI) optimization

- Metal buried FTI, which blocks cross-talk, degrades PDE due to light absorption on the metal.
- The buried SiO2 thickness is optimized to reduce the absorption.

SONY 18/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

PDE for near infrared

>16 point increase at λ = 940 nm

• PDE of 36.5 % at 940nm wavelength is achieved.

DCR & Timing jitter

• DCR & timing jitter are maintained with STD.

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

Photon counting with SPAD

• The photons can be counted using the triggering pulse which is induced by incident photons in the SPAD.

SONY 22/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Readout circuit size reduction

• The counter size must be reduced for the pixel pitch shrinking

SONY 23/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Challenges in reducing pixel size

• Additional circuits for HDR and sufficient counter bits for sufficient SNR are needed in pixel front-end (PFE) circuit.

SONY 24/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Approach to 3.36 µm-pitch pixel circuit

• 3.36 µm-pitch pixel circuits is realized by moving the HDR circuit and upper count bits to outside of the PFE.

SONY 25/39 4th June 2024 International SPAD sensor workshop 2024, Jun Ogi, Sony Semiconductor Solutions Corporation

Photon-counting with clocked recharging

Photon=0 Photon=1 Photon>1

 Number of time slots wherein photons are incident once or more is counted.

Multi-cycle clocked recharging

• Six different time cycles are combined to achieve 120 dB DR and monotonic increase of SNR (no SNR dip)

SNR and DR control

- 120 dB DR is achieved with the multi-cycle clocked recharging.
- The blight-light response can be controlled with the clock setting.

[11] T. Takatsuka et al., VLSI 2023

HDR image capturing

Exposure 1/150 s, Framerate 150 fps

• Global shutter movie with 120 dB DR and 150 fps is demonstrated.

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- **5.** Challenge of reducing pixel size via new structure
- 6. Summary

Embedded metal contact structure

• The embedded metal contact contribute to suppress the edge breakdown by increasing distance b/w anode and cathode region.

[12] J. Ogi et al., IISW 2023

The dark count rate

• DCR is successfully reduced with the embedded metal contact and the optimized design to decrease the electric field on the pixel edge.

The photon detection efficiency

Measured at 25 °C

*Photon detection rate to incident photons on the whole pixel area (3.06 μ m \Box)

• The PDE is 57% even with the small pixel size because of the optimized potential slope for the electron transfer.

Outline

- **1.** Pixel size reduction in SPAD sensor development
- 2. Pixel size reduction to 2.5 μm
- **3. PDE enhancement for near infrared**
- 4. High-resolution photon-counting image sensor
- 5. Challenge of reducing pixel size via new structure6. Summary

Pixel size and performances.

	Unit	IEDM 2016 [13]	IISW 2017 [14]	JSTQE. 2018 [15]	ISSCC 2019 [2]	Optics 2020 [16]	IEDM 2021 [17]	IISW 2023 [18]	IEDM 2020 [7]	IEDM 2021 [8]	IEI 20 [؟	OM 22 €]	VLSI 2023 [10]	IISW 2023 [12]
Pixel pitch	μm	7.83	3	5	9.2	4	6.39	10.17	10	6	3.3	2.5	6.0	3.06
V _{bd}	V	12	15.8	N/D	28.5	22.1	30	18.6	20	22	19	18	22	20.9
Vex	V	3	1.2	5.8 ^{*3}	2.5	6	2.5	3.5	3.0	3	3	3	3.0	3
Peak PDE	%	11.6	6 ^{*3}	12 ^{*2*3}	23	14.2	69.4	34.4 ^{*2*}	53.5 ^{*1}	69.4 ^{*1}	82.5	76.1	88.4	57
PDE at 940nm	%	3.2	~1	N/D	N/D	N/D	24.4	22	14.2	20.2	22.5	20.4	36.5	N/D
DCR @25°C	cps	10974	1343	17.3 ^{*3}	20.3	2.5	1.8	8.6 ^{*3}	3	19	2.2	173	10	15.8
Jitter FWHM	ps	205	185	N/D	N/D	72	100	103	172	137	196	214	209	N/D
Cross- talk	%	N/D	< 0.2 *4	4.9 ^{*3}	N/D	3.57	N/D	N/D	N/D	0.5	0.85	1.0	1.12	<0.4

• 3 - 6 µm pitch SPAD pixels have been reported with enhancement of PDE and maintaining low DCR.

Photon-counting image sensors

	LInit	Sensors2018	ISSCC2019	Optica2020	ISSCC2022	ISSCC2021	VLSI2023
	Unit	[19]	[2]	[20]	[6]	[4]	[11]
Pixel pitch	μm	8.25	36.8 x 9.2	9.4	9.585	12.24	3.36
Pixel array	Pix	96 ×40	64 × 256	1024 ×1000	960 × 960	264 ×160	748 × 448
CMOS Technology	Nm	40	Stacked 90 / 40	180	Stacked 90 / 40	Stacked 90 / 40	Stacked 90 / 22
In-pixel counter	Bit	12	28	1	11+3bit latch	9	8
Max. frame rate	fps	60	30	0.45	90	250	150
Dynamic range	dB	109	129	108.1	143	124	120
SNR Max.	dB	~40	>40	30.5	33	40	33.7
SNR dipped	-	30	No dip	29.5	24	No dip	No dip
Motion artifact Suppression	N/A	No	Yes	No	No	Yes	Yes

 3.36 µm pitch photon-counting image sensor has been reported with competitive characteristics.

Summary

- The SPAD pixel size has been reduced to improve the SPAD sensors performances.
- Back-illuminated and stacked technology are further reducing the pixel size.
- 3 6 µm pitch SPAD pixels have been reported with enhancement of PDE and maintaining low DCR.
- 940 nm PDE is improved to 36.5 % with 6-µm-pitch pixel
- 3.36 µm pitch photon-counting image sensor has been reported with competitive characteristics.
- SPAD pixel size is expected to be reduced further in the near future.

References

[1] A. R. Ximenes *et al.*, ISSCC 2018.
 [2] R. K. Henderson *et al.*, ISSCC 2019.
 [3] O. Kumagai *et al.*, ISSCC 2021.
 [4] J. Ogi *et al.*, ISSCC 2021.
 [5] J. Ogi *et al.*, ISSCC 2021.
 [6] Y. Ohta *et al.*, ISSCC 2022.
 [7] K. Ito *et al.*, IEDM 2020.
 [8] S. Shimada *et al.*, IEDM2021.
 [9] S. Shimada *et al.*, IEDM2022.
 [10] Y. Fujisaki *et al.*, VLSI2023.
 [11] T. Takatsuka *et al.*, VLSI2023

[12] J. Ogi *et al.*, IISW2023.
[13] T. Al Abbas *et al.*, IEDM2016.
[14] Z. You *et al.*, IISW2017.
[15] F. Acerbi *et al.*, IEEE JSTQE 2018.
[16] K. Morimoto *et al.*, Optics Express, 2020.
[17] K. Morimoto *et al.*, IEDM 2021.
[18] B. Mamdy *et al.*, IISW 2023
[19] N.A.W. Duttion *et al.*, Sensors, 2018.
[20] K. Morimoto *et al.*, Optica, 2020.

SONY

SONY is a registered trademark of Sony Group Corporation.

Names of Sony products and services are the registered trademarks and/or trademarks of Sony Group Corporation or its affiliates.

Other company names and product names are registered trademarks and/or trademarks of the respective companies.