

Rethinking boundaries: 3D integration & advanced packaging as performance drivers

Perceval Coudrain CEA-Leti, Univ. Grenoble Alpes, France

Outline

- eral view variance and **Outline**
• Why going vertical ?
• 3D integration toolbox
	-
- **Outline**
• Why going vertical ?
• 3D integration toolbox
• 3D integration for innovative • 3D integration for innovative architectures

Why going vertical ?

Three-Dimensional IC Trends

YOICHI AKASAKA

Invited Paper

VLSI will be reaching to the limit of minimization in the 1990s. and after that, further increase of packing density or functions might depend on the vertical integration technology.

Three-dimensional (3-D) integration is expected to provide several advantages, such as 1) parallel processing, 2) high-speed operation, 3) high packing density, and 4) multifunctional operation. Basic technologies of 3-D IC are to fabricate SOI layers and to

stack them monolithically. Crystallinity of the recrystallized layer in SOI has increasingly become better, and very recently crystalaxis controlled, defect free single-crystal area has been obtained in chip size level by laser recystallization technology.

Some basic functional medels showing the concept or image of a future 3-D IC were fabricated in two or three stacked active layers.

Some other proposals of subsystems in the application of 3-D structure, and the technical issues for realizing practical 3-D IC. i.e., the technology for fabricating high-quality SOI crystal on complicated surface topology, crosstalk of the signals between the stacked layers, total power consumption and cooling of the chip. will also be discussed in this paper.

INTRODUCTION

The ultimate IC structure of the future is thought to consist of stacked active IC layers sandwiched by insulating materials.

Various devices or circuit functions, such as photosensors, logic circuits, memories, and CPUs, will be arranged in each active layer and, as a result, a remarkable improvement in packing density and functional performance will be realized.

In 1979, it was reported that polysilicon deposited on insulator can be melted and recrystallized by laser irradiation [1] and that the crystal perfection of the layer can be adequate to allow the fabrication of devices.

The quality of the recrystallized layer can be characterized by carrier mobility. As shown in Fig. 1, the electron mobility reported so far has increased year by year and has attained a value comparable to bulk crystals. This improvement was a trigger for starting research and development of 3-D ICs.

A partial 3-D structure has already been tried for a dynamic memory (DRAM) cell [2], [3]. For high-density RAMs,

Manuscript received January 23, 1986; revised August 8, 1986. The author is with the LSI R & D Laboratory, Mitsubishi Electric Corporation, 4-1, Mizuhara, Itami, Japan.

Fig. 1. Progress of surface carrier mobility of MOSFET fabricated on SOI laver. O-CW laser: D-electron beam: Δ carbon strip heater.

such as the 4-Mbit DRAM, the area of the memory cell capacitor is limited, so in order to increase the cell capacitance, a 3-D structure, i.e., a trench cell or a stacked capacitor cell, has been tried. This partial 3-D structure will be used in 2-D VLSIs within a few years.

To achieve a breakthrough in the packing density of advanced VLSIs, it is reasonable to consider a 3-D structure, containing either partially or completely stacked active layers. Fig. 2 shows a forecast of the development of 3-D ICs schematically, as 3-D technology progresses. This figure was obtained from the 3-D IC Research Committee of the 3-D

0018-9219/86/1200-1703\$01.00 @ 1986 IEEE

1986 review

1986 review
Expecting 3D
production around 2000 1986 review
Expecting 3D
production around 2000

Authorized licensed use limited to: CEA, Downloaded on June 04, 2024 at 08:05:26 UTC from IEEE Xplore. Restrictions apply. PROCEEDINGS OF THE IEEE, VOL. 74, NO. 12, DECEMBER 1986

Moore's law puts pressure on interconnects

• Consequences of miniaturization

Dramatic R.C increase \rightarrow interconnect delay

• Countermeasures to reduce R.C

Switch from Al to Cu & introduction off low-k dielectrics

SiO₂ dielectric

nects		
CMOS node	130 nm	32 nm
Interco. layers	$6\,$	$\boldsymbol{9}$
	350 nm	112,5 nm
M1 min. pitch		
M4 min. pitch	756 nm	168,8 nm
M6 min. pitch	1204 nm	337 nm
Back end of line design rules (Intel)		

Back end of line design rules (Intel)

R.C delay has become a major performance issue

New paradigms are needed

• Interconnects Bottleneck

Dramatic R.C increase \rightarrow circuit frequencies limited

Sealing becomes costly

• Scaling becomes costly

High manufacturing cost, low yield with large die High development cost (mask, IP porting, verif…)

• Heterogeneous architectures needed

More processing (AI, perception accelerators…) More data to handle (memory capacity, fusion…) More modularity, scalability & sustainability

3D benefits for advanced systems

• Best of all trends: Moore + more than Moore **Combination of Soc performance interconnections**
 Combination of SoC performance with SiP diversity
 Combination of SoC performance with SiP diversity
 Combination of Soc performance interconnections

• High-performance interconnections

Low R, L, C + massively parallel vertical processing

• Modern answers to design needs

I/O number non limited, partitioning, IP reuse, scalability & density Mixed CMOS nodes & materials (Si, III-V, II-VI, passives, MEMS)

3D integration toolbox

Morphology of a 3D circuit

3D circuit
• Thin stacked layers
Layer 1 (# bottom die) / (...) / Layer N (# top die) Layer 1 (# bottom die) $/(...)$ / Layer N (# top die)

• Layer-to-layer vertical interconnects **12 Circuit**
 Thin stacked layers

Layer 1 (# bottom die) / (...) / Layer N (# top die)
 Layer-to-layer vertical interconnects

Miniaturization trend: pillars, hybrid bonding ...

• Intra-layer vertical interconnects

Miniaturization trend: p
 Intra-layer vertical interconnects

Communication between frontside and backside of each layer

Through silicon Vias (TSV)
 Intra-layer in-plane interconnects (2D

ReDistribution Layers (RDL)

Assembly configurations

-
- -
	-

Pure packaging operation

Die to die by Wafer to wafer bie to wafer

- **Wafer to wafer

Wafer to wafer

Collective process

 High assembly throughput

 High alignment accuracy

 Yield loop Wafer to wafer

Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation** Θ **: Wafer to wafer

• Collective process

• High assembly throughput

• High alignment accuracy

• Yield loss

• Strong design limitation

• Strong design limitation

• Strong design limitation Wafer to wafer

• Collective process
• High assembly throughput
• High alignment accuracy
• Yield loss
• Strong design limitation

Mass production**
-
-

P. Coudrain, ISSW2024 - The International SPAD Sensor Workshop 2024, Grand Hotel Trento, June 4-6, 2024

P. Coudrain, ISSW2024 - The International SPAD Sensor Workshop 2024, Grand Hotel Trento, June 4-6, 2024

P. Coudrain, Mass production for image sensors and memories

-
-
-
-
-

Breakthrough processes needed

Wafer bonding techniques
Why & how ?

• Why & how ?

Thin wafer processing (<300µm) Wafer-to-wafer 3D stacking **Wafer bonding techniques

Why & how ?

Thin wafer processing (<300µm)

Wafer-to-wafer 3D stacking

Temporary <u>or</u> permanent bonding

A wide range of processes**

• A wide range of processes

Each with own strengths and weaknesses

Direct bonding process

Bonding without added material Fig. 30.

Based on attraction of very smooth surfaces Flatness & cleanliness at all scales \rightarrow CMP

• SiO₂/SiO₂ bonding

Required roughness < 0,65nm rms [1] Van der Waals interaction at T_{amb} Covalent bonds formed after annealing Required roughness < 0,65nm rms ^[1]

2) Yan der Waals interaction at T_{amb}

2) Covalent bonds formed after annealing

2)

2) Yangle Covalent properties and the set of the set

• Cu/Cu bonding

Required roughness < 0.5 nm rms $^{[2]}$

Cu recrystallization during annealing $>$ 200 $^{\circ}$ C [3]

[1] F. Rieutord, et al. *ECS Trans.*, vol. 3, no. 6, pp. 205–215, 2006

Bonding wave: glass to Si & Si to Si bonding

SiO $_2$ /SiO $_2$ interface after annealing

"TSV last" low density process **"TSV last" low density process**
• Done <u>after</u> full CMOS process $[4]$
Wafer bonding on carrier & low temp. process
AR (= height/diameter) increased over time

Wafer bonding on carrier & low temp. process AR (= height/diameter) increased over time Keep out zone + alignment \rightarrow area penalty

• Industrially mature since 2008

CMOS image sensors

 $2.49 \mu m$ 1.64um

 $.58K.6.67km$

TSV contact on Metal1 layer **AR 1,2** after passivation AR 2 after passivation AR 2,5 after RDL AR 3,7

"TSV middle" process

**"TSV middle" process

• Done <u>during</u> CMOS process [5]**

Aspect ratio usually > 10, Diameter 2-15 µm

TSV etched & filled with Cu prior to BEOL process Aspect ratio usually > 10, Diameter 2-15 µm TSV etched & filled with Cu prior to BEOL process
TSV revealed on backside after Si thinning
Reduced keep out zone vs. TSV last TSV revealed on backside after Si thinning Reduced keep out zone vs. TSV last

• Industrially mature since 2013

DRAM stacks, FPGA (Xilinx)

TSV Middle after CMP TSV co-integrated with microring TSV & CMOS BEOL TSV Structure

resonators

"High density TSV" (HD-TSV) process flow W **"High density TSV" (HD-TSV)**
• Done <u>after</u> circuit processing ^[6]
Diameter typically < 2µm & height <15 µm
Ultra-uniform Si thinning needed (TTV < 1µm)

Diameter typically < 2µm & height <15 µm Ultra-uniform Si thinning needed (TTV < 1µm)

R&D activity

Power delivery network (PDN), SPAD arrays

Technologies for 3D interconnects

Solder-based interconnects for flip-chip
 Solder choice vs. temperature

SnPb (183°C) > historical, but Pb now forbidden in EU

SnAg (221°C), SnAgCu (217°C), In (152°C)... **Solder-based interconnects for flip-chip**
Solder choice vs. temperature
SnPb (183°C)-> historical, but Pb now forbidden in EU
SnAg (221°C), SnAgCu (217°C), In (152°C)...
Interconnect process Solder-based interconnects for flip-chip

• Solder choice vs. temperature

• Interconnect process

Paste printing & ball serigraphy for large geometries Semi-additive process with (ECD) for reduced pitch **Solder choice vs. temperature**

Solder choice vs. temperature

SnPb (183°C) \rightarrow historical, but Pb now forbidden in EU

SnAg (221°C), SnAgCu (217°C), In (152°C)...
 Interconnect process

Paste printing & ball serigrap Paste printing & ball serigraphy for large geor

Semi-additive process with (ECD) for reduced

Polymer underfill systematically added in free

Paste printing

Paste printing

Paste printing

Paste printing

Paste printing
 Paste printing & Dall Serigraphy for large general-additive process with (ECD) for reduced by the method of the reduced by the method of $\frac{2}{\text{Poisson} + \text{Poisson}}$

R

ECD ECD ECD

 $180A^{11}$ Semi-additive process 2-layer stack on BGA: 10µm Pillars between top and $^{[7]}$ P. Coudrain et al., ECTC 2019 $^{\text{[7]}}$ P. Coudrain et al., ECTC 2019

Direct hybrid bonding process: a hot topic !

• Mix $\text{SiO}_2/\text{SiO}_2$ & Cu/Cu bonding

Precautious CMP process Specific design rules to control dishing in Cu

• Unprecedented interconnect pitch

1µm pitch demonstrated in 2017 Precision alignment is key: 50nm expected in 2025

Direct hybrid bonding principle

vs. pitch reduction

 $\frac{1}{\sqrt{2}}$ With pitch reduction, EM defect moves from BEOL to hybrid bonding levels, but extrapolated lifetimes are not affected at use conditions [10,11]

• No diffusion identified, thanks to the presence of 3 nm $Cu₂O$ layer barrier, stable with time and temperature

[12] Ayoub et al., IRPS 2022 [13] Ayoub et al., Micro rel. 2023

Die-to-wafer hybrid bonding challenges

• Known Good Die strategy [14,15]

Probing marks to make compatible with bonding

• Pitch reduction trend [16]

Alignment precision is the key to success Multi-pitch for design flexibility, reduced interdie-space

pileup

The contract of the contra

Alignment precision for 5µm pitch

¹⁶

3 x 3 mm²

Die-to-wafer integration with 40µm inter-die spacing [17]
 D-T-W alignment precision is (16)

¹⁶⁹ E. Bourjot et al., ESTC 2022

P. Coudrain, ISSW2024 - The International SPAD Sensor Workshop 2024, Gr ER COLLECTION CONTROL COLLECTION COLLECTION CONTROL COLLECTION COLLECTION COLLECTION COLLECTION COLLECTION C pileup

hollow

Probing marks
 E. Bourjot et al., 3DIC 2019

^[14] E. Bourjot et al., BCTC 2021

^[14] E. Bourjot et al., ECTC 2021

^[14] P. Metzger et al., Minapad 2022

P. Coudrain, ISSW2024 - The Internation

P. C pileup

hollow

Probing marks

Probing marks

Die-to-wafer integration

1918 E. Bourjot et al., BDOONM

1919 E. Bourjot et al., ECTC 2021

^[15] E. Bourjot et al., ECTC 2021

P. Coudrain, ISSW2024 - The Internation

P. Co • 500nm D-T-W alignment precision is expected in 2024-25

Die-to-wafer integration with 40µm inter-die spacing [17]

Probing marks

Self-assembly approach for direct bonding

• Capillary-assisted process [18-20]

Drop of water between chip and substrate Liquid capillary tension minimizes surface energy Water confinement controls alignment accuracy

Performances^[21,22]

resistance similar to standard D-to-W]

High throughput (> 5000 ph) with high precision (< 200 nm expected in 2025)

 $[18]$ S. Mermoz, PhD thesis, U. Grenoble, France 2015 $[21]$ E. Bourjot et al. ECTC 2023 $^{[19]}$ A. Jouve et al., ECTC 2019 $^{[22]}$ A. Thiolon et al., to be published at ESTC 2024 [20] A. Bond et al., ECTC 2022 22

Hydrophilic direct

bonding surface

 $WCA < 90^\circ$

Pad edge topography

= physical contrast

3D integration for innovative architectures 3.

• Dimensions

Reduced form factor (x,y,z) **Benefits of 3D Integration for in
Dimensions
Reduced form factor (x,y,z)
Abuttable sensors for RX & IR sensing
New architectures!**

• New architectures!

Parallel pixel processing Layers functionalization & optimization

[25] T. Tanaka et al., IEDM, 2007

Backside illumination as an enabler for 3D CIS

Backside illumination process requires wafer bonding on a carrier. There's just one step to **Backside illumination as an enable**
Backside illumination process requires wafer
bonding on a carrier. There's just one step to
3D integration: replace carrier by a functional wafer!

• 2-layer CIS (2013)

Oxide bonding [26] followed by hybrid bonding [27]

SiO2/SiO2 bonding

Hybrid bonding

• 3-layer CIS (2017)

Intermediate DRAM layer [28]

[27] Y. Kagawa et al., IEDM, 2016

Smart imager developments

• From imagers to vision sensors

Edge-AI applications for autonomous vehicle

3-layer scheme [29]

Pixel array / Readout IC / AI & memory layer 2 hybrid bonding with 1x10µm HD-TSV Autonomous vehicle functions

1x10μm TSV (2μm pitch), R_{TSV} = 500mΩ
Misalignment HB2: max. 1 μm (avg 200 nm)

HBM

HBM

HBV

HBV

Electrical characterization of hybrid bonding/HD TSV transitions

2-layer stacked 4T pixels CMOS Image Sensors

Pixel split for FWC increase $^{[31]}$

BSI pinned photodiode + transfer gate on layer 1 RST, source follower & read transistors on layer 2

Sequential integration mandatory

Misalignment between layer << 1 µm Mono. Si transfer + low temp. CMOS process Monocristalline Si layer transfer [1]

2-layer pixel schematics based on 3D sequential integration

P. Court Countries and Co

Deep photodiodes, oxide-based full trench isolation (FTI), 1µm dual photodiodes [32]

Sequential 3D pixel with hybrid bonding [33]

Increased diode area

44% for 1.4µm pitch

Smart pixel Adaptation, calibration

-
-
-
-

Combining sequential integration with hybrid bonding offers a great opportunity for pixel partitioning with pitch in the 1 µm range and distributive computing for high efficiency **Smart pixel

Adaptation, calibration

Pre-processing

Combining sequential integration

opportunity for pixel partitioning

distributive computing for high ef

re-Guayder et al., IEDM 2022

P. Coudrain, ISSW2024 - The In**

**3D integration in SPAD
Separation detection & readout [34]**

Separation detection & readout [34]

Layer optimization: CIS (90nm) & CMOS (22nm) Better sensitivity, high FF, low DCR & functionality

• 3D technology has evolved

Bridges [35], oxide bonding with metal vias [36] Bumping, hybrid bonding [37,38]

3D Geiger-Mode APD with Two SOI Timing Circuit Layers [36]

Front illuminated vs. back-illuminated 3D stacked SPAD image sensors [34]

FTI & Cu-Cu bonding [38]

Take-home messages

- 3D integration is far from a new idea!
- Imaging has played a pioneering role in the industrialization of these technologies: TSV, oxide & hybrid bonding
- P. Coudrain, ISSW2024 The International SPAD Sensor Workshop 2024, Grand Hotel Trento, June 4-6, 2024
P. Coudrain, ISSW2024 The International SPAD Sensor Workshop 2024, Grand Hotel Trento, June 4-6, 2024
P. Coudrain, • It is now conceivable that any vertical architecture can be realized in one way or another. But... the right cost/performance compromise needs to be found
- Designers are often not fully aware of the technical toolbox available \rightarrow come & discuss!

quantum interposers

Optical transceiver

Thanks !

CEA-Leti, Grenoble, France www.leti-cea.com perceval.coudrain@cea.fr

