

Low-noise InGaAs/InP SPAD with photon detection efficiency exceeding 50% at 1550 nm

Fabio Telesca¹, F. Signorelli², L. Finazzi¹, E. Conca², and A. Tosi¹

¹Dipartimento di Elettronica, Informazione e Bioingegneria,Politecnico di Milano, Italy ²Micro Photon Devices S.r.l., Bolzano, Italy

OUTLINE

Quantum information and communication Quantum cryptography (QKD) Requirements: 9 High detection efficiency at 7550 mr. 9 High count rate 1 Hi

Design of front-illuminated planar InGaAs/InP SPAD

Current-voltage curves

State-of-the-art comparison Ref. Temperature (K) PDE (%) DCR (ops) Afterpulsing probability 4.5%-8.1% 225 17.3-51 This work 1.9 k - 18 k with long T_{ON} and HO = 1 µs 1.4% - 4.4%Signarelli et a 225 11 - 30 560 - 1.37 k with long $T_{\rm ON}$ and HO = 1 μs 196 - 796 233 10-31 100 - 1000 Baek et al. with T_{ON} = 2 ns and HO = 100 ns 1.4% - 12.6% Fang et al. 253 7.5 - 45 900-21.6 k with 1.25 GHz sine wave gating 0.7% - 21.6% 253 10.2 - 25.3 14.4 k - 16.8 k Pack et al. with HO = 160 ns 61.5% - 90% 233 10-48 22.2 k - 111.1 k Tamura et al. (HO not reported) He et al. 247 8 = 55.41000 - 43.8k N.A. 3% - 22% Zhang et al. 233 10 - 40 127 - 1000with T_{cei} = 1 ns and HO = 20 ns NOLITECHICO MILAHO ING STUTION STUTION Fable Telesco

Experimental characterization

Conclusions

ullet

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Quantum information and communication

Quantum cryptography (QKD)

Requirements:

- High detection efficiency at 1550 nm
- Low noise
- High count rate

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Imaging applications

Light detection and ranging (LiDAR) Non-line-of-sight (NLOS) imaging

Requirements:

- High efficiency in SWIR range for eye-safety
- Sharp timing response

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Front-illuminated planar InGaAs/InP SPAD

 $In_{0.53}Ga_{0.47}As (E_G = 0.75 \text{ eV}):$

- Absorption up to $\lambda = 1700$ nm
- Unsuitable for avalanche multiplication (tunneling)

InP (E_G = 1.35 eV) – *lattice matched*

→ Separate Absorption Charge and Multiplication (SACM)

Front-illuminated planar InGaAs/InP SPAD

- Charge layer (n-doped)
 → Shapes the electric field
- Double zinc diffusion (p-dopant)
 → Defines active area
- 5 grading layers (InGaAsP)
 → Reduces barrier for facilitating photo-generated holes transit

TCAD modeling and simulation

TCAD simulations (Sentaurus, Matlab) \rightarrow optimize the internal structure for different objectives

3 DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Avalanche triggering probability: diffusion of carriers

Avalanche triggering probability (Oldham *et al.*):

$$\frac{dP_e}{dx} = (1 - P_e) \cdot \boldsymbol{\alpha} \cdot (P_e + P_h - P_e \cdot P_h)$$
$$\frac{dP_h}{dx} = -(1 - P_h) \cdot \boldsymbol{\beta} \cdot (P_e + P_h - P_e \cdot P_h)$$

Carrier **diffusion** from quasi-neutral regions:

$$P_{e}(y) = P_{e}(w_{p})e^{\frac{y-w_{p}}{L_{e}}}, for \ y < w_{p}$$
$$P_{h}(y) = P_{h}(w_{n})e^{\frac{w_{n}-y}{L_{h}}}, for \ y > w_{n}$$

Avalanche triggering probability

Extended avalanche triggering probability

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Optical simulations: InP and InGaAs complex refractive index

Wavelength (µm)

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Fabio Telesca

Wavelength (µm)

Photon detection efficiency simulation

POLITECNICO MILANO 1863

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Fabio Telesca

1.7

1.6

1.5

PDE simulation results

Contributions to PDE from various regions:

- InGaAs is the main contribution
- Carrier diffusion is only relevant up to 900 nm
- InGaAsP grading layers have a non-negligible contribution (about 10% of the total PDE)
- InP bottom layers do not contribute to PDE

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Enhanced PDE InGaAs/InP SPAD: TCAD modeling

PDE estimated from TCAD simulations

Thicker InGaAs absorption layer & Optimized double zinc diffusion profile, Charge layer thickness

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Structure for high photon detection efficiency

Thicker InGaAs absorption layer → Higher noise, reduced active area uniformity

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Structure for high photon detection efficiency

TCAD simulations with commercial software and custom models:

- Optimized double diffusion \rightarrow Enhanced active-area uniformity
- Contacted guard ring → Prevent edge breakdown, mitigate charge persistence

Small active area (10 µm diameter):

 \rightarrow Reduced noise, still good for fiber pigtailing

Current-voltage curves

Breakdown voltage: **67.5 V** Punch-through voltage: **53 V**

Dark current is mainly due to surface generation \rightarrow not relevant for SPAD

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Gated-mode SPAD operation

Basic schematic for square-wave gating

- Passive quenching in the starting phase
- Complete quenching by pulling down the gate voltage
- Long enough OFF time to limit afterpulsing

POLITECNICO MILANO 1863

• SPAD-DUMMY approach to subtract feed-through

Voltage

Dark count rate

Long \mathbf{T}_{OFF} (100 µs) to avoid afterpulsing

At **T = 225 K**: DCR of few kcps

At **T** ≤ **200 K**: Charge persistence is stronger

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Photon detection efficiency

POLITECNICO MILANO 1863

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Photon detection efficiency

Laser source:

- $\lambda = 1550 \text{ nm or } \lambda = 1310 \text{ nm}$
- 5 µm laser spot size

Photon detection efficiency:

- up to **51%** for λ = 1550 nm
- up to **57%** for λ = 1310 nm

with DCR = 18 kcps

Afterpulsing probability

SPADs and DUMMYs

ROIC (Read-Out Integrated Circuit) Read-out integrated circuit (**ROIC**):

- 0.16 µm BCD technology
- Up to 8 SPADs (and DUMMYs)
- Up to 5 V excess bias
- Up to 100 MHz gate
- Tunable hold-off time
- ~ 1-2 ns quenching time

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Afterpulsing probability

High gate frequency, hold-off time enforced after every avalanche. Afterpulsing is just few percent at 225 K and 1 MHz gate frequency.

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Temporal response

- 18 ps (FWHM) pulsed laser
- $\lambda = 1550 \text{ nm}, T = 225 \text{ K}$
- Laser spot **focused** on a high-efficiency peak inside the active area

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

Temporal response

Position and amplitude of secondary peak depend on the laser position \rightarrow Residual non-uniformities inside the active area

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

State-of-the-art comparison

Ref.	Temperature (K)	PDE (%)	DCR (cps)	Afterpulsing probability
This work	225	17.3 – 51	1.9 k – 18 k	4.5% – 8.1% with long T _{ON} and HO = 1 μs
Signorelli et al.	225	11 - 30	560 – 1.37 k	1.4% - 4.4% with long T _{oN} and HO = 1 μs
Baek et al.	233	10 - 31	100 - 1000	1% - 7% with T _{on} = 2 ns and HO = 100 ns
Fang et al.	253	7.5 - 46	900 - 21.6 k	1.4% - 12.6% with 1.25 GHz sine wave gating
Park et al.	253	10.2 - 25.3	14.4 k - 16.8 k	0.7% - 21.6% with HO = 160 ns
Tamura et al.	233	10 - 48	22.2 k - 111.1 k	61.5% - 90% (HO not reported)
He et al.	247	8 – 55.4	1000 - 43.8k	N.A.
Zhang et al.	233	10 - 40	127 – 1000	3% – 22% with T _{on} = 1 ns and HO = 20 ns
	NO 1863 DIPARTIMENTO DI EI	LETTRONICA, OINGEGNERIA	Fabio Tele	esca 24

(SEE)

CONCLUSIONS

- Optimized InGaAs/InP SPAD structure for enhanced PDE
 - TCAD simulations to tailor double diffusion depth, charge layer and absorption layer thicknesses
 - PDE simulations to estimate the PDE enhancement
- Best-in-class PDE (up to 51%) at 1550 nm with:
 - DCR < 20 kcps
 - Timing jitter ~ 70 ps (FWHM)
- **Reduced afterpulsing** (few percent) thanks to a custom-designed integrated circuit

DIPARTIMENTO DI ELETTRONICA, INFORMAZIONE E BIOINGEGNERIA

We acknowledge co-funding support from the Autonomous Province of Bozen/Bolzano Südtirol/Altoadige under LP 14/06 - Bando 2016 - SPIR project