ISSW2024

Avalanche build-up field and its impact on the SPAD pulse width and inter-pulse-time distributions.

D. Rideau, R. Helleboid, G. Mugny, I. Nicholson*, A. Bianchi, D. Golanski, B. Mamdy, J-B. Kammerer**, S. Rink**, C. Lallement**, B. Rae*, W. Uhring**, S. Pellegrini*, M. Agnew*, E. Lacombe, J.R. Manouvrier, M. Al-Rawhani*.

STMicroelectronics, 1850 rue J. Monnet BP16, 38926 Crolles, France. *STMicroelectronics, 1 Tanfield, Inverleith Row, Edinburgh, UK. **ICube laboratory, Université de Strasbourg, 1 Pl. de l'Hôpital, 67000 Strasbourg, France.

denis.rideau@st.com

Agenda

1	Direct Tir
1	General

me-of-Flight sensor: concepts of SPAD

A SPAD is a statistical device 2

3 VerilogA SPICE model

4 Experimental and model

Experimental results presented here are not representative of our best SPAD devices, but shown for modeling benchmarking purpose.

Measuring distance through history

Ivory Ruller from the 1800s.

Land surveyors chains around 1600

measuring wheel from the 1800s.

From History of Measuring Instruments - Malevus

VL53L5CX 4th generation FlightSense™

Direct Time-of-Flight sensor (TOF)

Direct Time-of-Flight sensor: (SPAD)

Architectures for a SPA

Direct Time-of-Flight sensor: the quench of a SPAD

Diode Current curve

7

Passive Quench circuit (Simplified Circuit)

Understanding the SPAD dynamics

Agenda

1	Direct Time-of-Flight sensor:
1	General concepts of SPAD

- 2 A SPAD is a statistical device
- 3 VerilogA SPICE model

A SPAD is a statistical device

The quench of a SPAD:

When we can have a problem!

Pulse width vary!

The quench of a SPAD

When the dead time of the quench circuit is too small secondary avalanches can occur

Stochastic: Impact ionization

The impact ionization is a stochastic process (Monte Carlo simulation – only electrons shown)

Increase of the number of particles in a PN junction (3 Monte Carlo simulations)

Stochastic: Where II occurs

Avalanche region and collection volume are separated

A SPAD quenching..

Quenching a SPAD = debiasing the diode to switch off the avalanche

Π

1	Direct Time-of-Flight sensor:
	General concepts of SPAD

- 2 A SPAD is a statistical device
- 3 VerilogA SPICE model

VerilogA model of a SPAD : goal

At circuit level the digital output is monitored

VerilogA model for a SPAC

Currents Induced by Electron Motion* SIMON RAMO†, ASSOCIATE MEMBER, J.R.S. 1939

VerilogA model for a SPAD: effective Ramo Width

Number of carriers

VerilogA model for a SPAD : the charges and capacitance

life.augmented

VerilogA model of a SPAD: master equations

Currents Induced by Electron Motion* SIMON RAMO†, ASSOCIATE MEMBER, T.R.E. 1939

VerilogA model of a SPAD: master equations

VerilogA model for a SPAD : Carrier multiplication

VerilogA model for a SPAD : Breakdown Voltage and Capacitanc

23 of 37

VOLTAGE [V]

VerilogA model for a SPAD : bluid-up field

The additional charges create a dipole that tends to reduce the diode junction field !

VerilogA model for a SPAD : parameters calibration

- An overall agreement bw model predictions and measurement is to be achieved combining several FOMs
- It requires some trade off sometimes !

VerilogA model for a SPAD : avalanche current fluctuations

The II ionization is a statistical process \rightarrow The number of created carriers fluctuate \rightarrow Voltage curves exhibits a dispersion

VerilogA model of a SPAD: avalanche current fluctuations

The II ionization is a statistical process → The number of created carriers fluctuate → Voltage curves exhibits a dispersion → digital pulse width fluctuate

Model vs. measurements: PW distribution and IPT

Comparison with measurements: transient setup

Model vs. measurements: quench circuit

Faster RC time constant: 3ns

Faster recharge is not always a path for a "faster" SPAD

Direct Time-of-Flight sensor: General concepts of SPAD
I

- 2 A SPAD is a statistical device
- 3 VerilogA SPICE model

Conclusions

- Direct Time-of-Flight sensor:
 - General concepts
 - A statistical device!
- VerilogA SPICE model
 - Quench Circuit
 - Model Equations
 - Measurements and Model

Questions?

denis.rideau@st.com

33 of 37

Charge per pulse

Agenda

Section title

Our technology starts with You

© STMicroelectronics - All rights reserved. ST logo is a trademark or a registered trademark of STMicroelectronics International NV or its affiliates in the EU and/or other countries. For additional information about ST trademarks, please refer to <u>www.st.com/trademarks</u>. All other product or service names are the property of their respective owners.

