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Agenda

1
Direct Time-of-Flight sensor: 
General concepts of SPAD 

2 A SPAD is a statistical device

3 VerilogA SPICE model

4 Experimental and model
Experimental results presented here are not representative of our best 

SPAD devices, but shown for modeling benchmarking purpose.
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Measuring distance through history

measuring wheel from 
the 1800s.

Ivory Ruller from the 
1800s.

sliding scale from the 1700s.

Land surveyors chains around 
1600

From History of Measuring Instruments - Malevus
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Direct Time-of-Flight sensor (TOF)

𝒅 =
𝒄 ∗ ∆𝒕

𝟐

Light speed

1m     ➔ ∆ t = 3.3 ns

2m     ➔ ∆ t = 6.7 ns

50m   ➔ ∆ t = 167 ns

100m ➔ ∆ t = 333 ns

TOF

LazerRef 

SPAD
SPAD

photon

Principle of a TOF:

10 cm accuracy the needle 

chronometer moves by

1e-9 degree !
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Direct Time-of-Flight sensor: (SPAD)

Photogenerated h/e pair

Particles 

multiplication

High 

Electric 

field

Avalanches by Impact Ionization in 

reverse biased diode 

1 electron → 2ē → 4ē → 8ē → 16ē →

32ē → 64ē →… → detection current

N

P

Substrate

𝑉𝐻𝑉 = 16 V

RQ

OPT

Need to be 

quenched!

K

A

VBD

VVHV0

Min Excess Bias ~=0.5V

VVHV (=CP14V)

Excess bias

ISPAD

ISPAD

Anode Voltage

Detection

VHV

VSPAD = 16V

Photon Event,

Avalanche Breakdown

Voltage dropped

Across quench resistor
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Architectures for a SPAD

+-+-

N N+

+-

N+PP+
P+P

+
-+

-

+
-

+
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Biasing: 17V ➔ 18V

Collection Width: <1um

Biasing: 30V ➔ 40V

Collection Width: 5um

Biasing: 17V ➔ 21V

Collection Width: 5um

Field 
Field Field 

PositionPositionPosition

Collection 

volume

Avalanche 

region

Depleted SPAD = Large collection volume for a reasonable biasing
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Direct Time-of-Flight sensor: the quench of a SPAD

Passive Quench circuit (Simplified Circuit)

𝑹𝑸𝑼𝑬𝑵𝑪𝑯

N

P

Substrate

𝑪𝑸𝑼𝑬𝑵𝑪𝑯

𝑽𝑺𝑷𝑨𝑫 = Vhigh

7

Ƭ1 Ƭ2

Ƭ3

Recharge

Understanding the SPAD dynamics

Diode Current curve
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A SPAD is a statistical device!

Deterministic simulation

Ƭ1 Ƭ2

Ƭ3

Recharge

Statistical simulation 

Delay + build up : Jitter

Secondary avalanche: Quench

➔ Stochastics effects?
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The quench of a SPAD:

OPT K

A

𝑉𝑆𝑃𝐴𝐷 High 

Voltage

G

S

D

V Invertor

𝑉𝐸𝐵 = 1.2 V

Invertor threshold

8

When we can have a problem!

Pulse width vary!
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When the dead time of the quench circuit is too small secondary avalanches can occur 

The quench of a SPAD

OPT K

A

𝑉𝑆𝑃𝐴𝐷 High 

Voltage

G

S

D

out

𝑉𝐸𝐵 = 1.2 V

Pulse Shaper

Transistor as a 

quench resistor Quench circuit optimization:

➔ Pulse width vs dead time!

Experimental Pulse Width

RC decreases !
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The impact ionization is a stochastic process (Monte 

Carlo simulation – only electrons shown)

Stochastic: Impact ionization 

Increase of the number of particles in a PN 
junction (3 Monte Carlo simulations)

Field
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Carrier 

diffusion

Electric field: 

transparent colors 

Electrons end 

in the N++ 

region Electrons start here

Avalanche region and collection volume are separated

Stochastic: Where II occurs
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A SPAD quenching…

VB+5.5V

RQ

SPAD
CQ

Electrons moving: I-V response:

Quenching a SPAD = debiasing the diode to switch off the 

avalanche
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VerilogA model of a SPAD : goal

The Quench circuit 

including capacitance 

resistances (and 

potentially all parasitic 

capacitances)

A

𝐶𝑄

VHV VDD 

VPS

K

RQ

Digital Out

GND

GND GND

VCAS

VEN

Passive Quench

Digital readout circuit

𝐶𝑃𝑆

GND

VHPF

‘Quench’ transistor

At circuit level the digital 

output is monitored

BV

VHV 1.1V
VHV 0V
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VerilogA model for a SPAD

Non depleted

Depleted

Toward a 1D model ! All the 

avalanche is ‘collapsed’ in 1 point 

of the device (where the electric 

field is maximum).

Ramo Currents Induced by 

Electron Motion*:   

𝐼𝑖 = 𝑞
𝑣𝑖. 𝑛𝑖

𝑤𝑖

1939

Ramo width 𝑤Electrons and Holes saturation 

velocity 𝒗𝒆 and 𝒗𝒉
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Created carriers in a thin region 

where the field is maximum



VerilogA model for a SPAD: effective Ramo Width

𝐼𝑖 = 𝑞
𝑣𝑖
𝑤

𝑖

. 𝑛𝑖One moving electron produces roughly 1e-8 A at the terminal.

Effective Ramo width 

Number of carriers
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VerilogA model for a SPAD : the charges and capacitance
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VerilogA model of a SPAD: master equations

𝑑𝑛𝑒
𝑑𝑡

=
1

𝑞
𝑀𝑒 . 𝐼𝑒 +

1

𝑞
𝑀ℎ. 𝐼ℎ −

𝑛𝑒𝑣𝑒
𝒘𝒆

𝑑𝑛ℎ
𝑑𝑡

=
1

𝑞
𝑀𝑒 . 𝐼𝑒 +

1

𝑞
𝑀ℎ. 𝐼ℎ −

𝑛ℎ𝑣ℎ
𝒘𝒉

𝑣𝑖
𝑤𝑖

=
1

𝜏𝑖

𝝉𝒊 is the ‘evacuation’ time

Created electrons and holes by impact ionization

Electrons leaving the SCR

Depleted Region

1939

Effective multiplication widths 

𝒘𝒆 and 𝒘𝒉
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VerilogA model of a SPAD: master equations

𝑑𝑛𝑒
𝑑𝑡

=
1

𝑞
𝑀𝑒 . 𝐼𝑒 +

1

𝑞
𝑀ℎ. 𝐼ℎ −

𝑛𝑒𝑣𝑒
𝒘𝒆

𝑑𝑛ℎ
𝑑𝑡

=
1

𝑞
𝑀𝑒 . 𝐼𝑒 +

1

𝑞
𝑀ℎ. 𝐼ℎ −

𝑛ℎ𝑣ℎ
𝒘𝒉

Depleted Region

𝑀𝑖 = 𝐴𝑛(𝐹𝑚𝑎𝑥). 𝑤𝑖

Effective multiplication widths 

𝒘𝒆 and 𝒘𝒉

Maximum field in the junctionAn = α𝑛. exp
−𝛽𝑛

𝐹
𝑚𝑎𝑥

Van Overstreaten Coefficients

Impact Ionization model

Maximum Field

5 Physical parameters
7 Device parameters

electrons

holes

21 of 37



VerilogA model for a SPAD : Carrier multiplication

The avalanche is driven by the multiplication of carrier in an ‘infinite’ time. 

0 5 10 15 20 25 30
0

0.5

1

1.5

VOLTAGE [V]


M

 [
-]

 

 

M
e
 (60 deg)

M
h
 (60 deg)

M (60 deg)

M (25 deg)
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18.3V

When M =1 the current is diverging. This 

is the BV and sets values for wn and wp

parameters.

I= 𝐼𝑜(1 + ∆𝑀 + ∆𝑀2+ ∆𝑀3+⋯)

∆𝑀 = 𝑀𝑛 +𝑀𝑝

I= 𝐼𝑜/(1 − ∆𝑀)
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VerilogA model for a SPAD : Breakdown Voltage and Capacitance

23
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VerilogA model for a SPAD : bluid-up field

11-Jun-24 24

The additional charges create a 

dipole that tends to reduce the 

diode junction field !



• An overall agreement bw model predictions and measurement is to be achieved 

combining several FOMs

• It requires some trade off sometimes !

VerilogA model for a SPAD : parameters calibration

11-Jun-24 25



VerilogA model for a SPAD : avalanche current fluctuations

The II ionization is a statistical process ➔ The number of created carriers fluctuate ➔

Voltage curves exhibits a dispersion

VerilogA SPICE model

A

𝐶𝑄

VHV

K

RQ

GND

VCAS

VEN

𝐶𝑃𝑆

GND
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The II ionization is a statistical process ➔ The number of created carriers fluctuate ➔ Voltage curves exhibits a 

dispersion ➔ digital pulse width fluctuate

VerilogA SPICE model

A

𝐶𝑄

VHV

K

RQ

GND

VCAS

VEN

𝐶𝑃𝑆

GND

VDD 

Digital Out

GND GND

Digital readout circuit

VerilogA model of a SPAD: avalanche current fluctuations
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Model vs. measurements: PW distribution and IPT

11-Jun-24 28



Comparison with measurements: transient setup

ICUBE, Strasbourg collaboration: RF 

Amplifiers make possible the monitoring of  

the Anode and the Cathode signals

A

𝐶𝑄

VHV

K

RQ

GND

VCAS

VEN

𝐶𝑃𝑆

GND

VDD 

Digital Out

GND GND

Digital readout circuit

APS

AA

GND GND

RF Amplifiers

𝐶𝑃𝑆

GND

VPS ‘Cathode’ APS

Anode : AA
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Model vs. measurements: quench circuit

A

𝐶𝑄
K

RQ

𝐶𝑃𝑆

GND

VCAS

VEN

Moderate RC time constant: 12nsFaster RC time constant: 3ns         

Faster recharge is not always a path for a “faster” SPAD 
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• Direct Time-of-Flight sensor:

• General concepts

• A statistical device!

• VerilogA SPICE model
• Quench Circuit

• Model Equations

• Measurements and Model

Conclusions
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Questions?
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Charge per pulse
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