

Developing InP SWIR SPAD arrays for an automotive Geiger-mode lidar

Mark Itzler June 5, 2024

InGaAs/InP SWIR SPAD development timeline

- Currently at
 LUMINAC
- This presentation covers work done while at Argo AI (until Jan 2023)

Presentation Outline

- **Background** of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: **sliding window oversampling**
- System performance enhancements: temporal pulse coding

Legacy SPAD Focal Plane Array: 128 x 32 with 50 μm pitch

- Initial InP-based SPAD array technology for camera products from Princeton Lightwave
 - o State-of-the-art was 128 x 32 format with 50 μm pixel pitch

ISSW2024 - The International SPAD Sensor Workshop 2024

4

Digital SPAD detection vs. analog APD detection

• Single-photon detection provides "digital" response ("photons to bits")

• Analog detection using linear-mode avalanche photodiodes (APDs)

Statistical sampling with Geiger-mode lidar

- Statistical analysis of time-of-flight returns with high repetition rate pulses
 - Each point cloud point created from ~100 200 samples (temporal and spatial)
 - Correlated counts provide high probability of detection for signal returns

Presentation Outline

- Background of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: sliding window oversampling
- System performance enhancements: temporal pulse coding

Key lidar system requirements for autonomous vehicles

Lidar System Requirements	Implications for Lidar Design & SPADs
360° azimuthal (horizontal) coverage	Rotating platform provides 360° with single sensor, static Tx/Rx path
Wider 30° vertical FOV at closer range with ~0.2° x 0.2° angular resolution	 Use 2 transceivers optimized for VFOV, resolution, and range Use same laser module and SPAD FPA for both transceivers Cover entire VFOV with laser and SPAD array formats Single optical alignment per transceiver with monolithic arrays
Narrower 10° vertical FOV at longer range with ~0.1° x 0.1° angular resolution	
Long-range (~250 m) detection to 10% reflector	
Mid-range (~50+ m) detection to 0.3% reflector	
10 Hz frame rate	Pulse repetition rate for enough temporal samples for coincidence processing while meeting resolution/point density
Conditions with high solar flux	Wavelength choice: good laser transmission while attenuating solar background (which gives upper limit on dark count rate)
Automotive temperature range (e.g., -40°C to +85°C)	Temperature-stabilize SPAD operation at higher temperature

Vertical imaging by continuous illumination and detection

Cover vertical field of view with fixed 1D arrays: laser illumination and SPAD array detection
 Angular resolution determined by receiver optics and detector pixel instantaneous field of view

Couple reflected 1D laser illumination to quasi-1D detector array

Use **"super-pixels"** to optimize trade-off between integrated signal (samples) and resolution

Horizontal imaging by high density azimuthal scanning

- Horizontal space-filling using rotating platform with high laser pulse rate
 - Average spatially (superpixels) and temporally (multiple pulses) to obtain Geiger-mode samples

High-level lidar architecture

- Meet requirements using two independent transceivers on same rotating platform
 - Mid-range with wider vertical field-of-view (VFOV), long-range with narrower VFOV 0
 - Point the transceivers in opposite directions (180°) to avoid crosstalk Ο
- Both transceivers use the same Laser Diode Transmitter and SPAD-based Receiver

Lidar architecture and key assemblies

Lidar integration on vehicle

- Lidars were integrated as part of sensor suites including cameras and radar
- ~400 lidars delivered, roughly half for vehicle fleets

On-vehicle point cloud video

ISSW2024 - The International SPAD Sensor Workshop 2024

Presentation Outline

- Background of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: sliding window oversampling
- System performance enhancements: temporal pulse coding

SPAD detector design and integration

- Separate Absorption and Multiplication (SAM) InGaAs(P)/InP avalanche diode structure
- Design 512 x 2 SPAD arrays with reduced pixel pitch of 25 μm
- Etched trenches for pixel isolation (optical and electrical)
- Sub-micron precision placement of 512 x 2 microlens array aligned to active diameters of <10 μm
- Wire-bonding to two 512 x 1 readout integrated circuits (ROICs) on either side of 512 x 2 SPAD array

512 x 2 SPAD array performance histograms (25°C)

- DCR and PDE histograms for typical 1024 pixel SPAD array
 - $\circ~$ Array was 12.8 mm long \rightarrow primary variation due to V_{br} non-uniformity
- Typical **25°C operation:** $\mu_{DCR} \sim 25 35 \text{ kHz}$ at $\mu_{PDE} \sim 20\%$

ISSW2024 - The International SPAD Sensor Workshop 2024

L311-01035 25C 220114 213340

512 x 2 SPAD array spatial distribution of PDE (25°C)

• PDE spatial variation primarily due to breakdown voltage variation

ISSW2024 - The International SPAD Sensor Workshop 2024

L311-01035 25C 220114 213340

512 x 2 SPAD array performance histograms (40°C)

- DCR and PDE histograms for typical 1024 pixel SPAD array
- Typical 40°C operation: $\mu_{DCR} \sim 60 75 \text{ kHz}$, $\mu_{PDE} \sim 20\%$

A4-800 40C postseal 220615 172633

512 x 2 SPAD array spatial distribution of PDE (40°C)

• PDE spatial variation primarily due to breakdown voltage variation

No ROIC-level bias corrections in 1st generation ROIC

ISSW2024 - The International SPAD Sensor Workshop 2024

A4-800 40C postseal 220615 172633

Presentation Outline

- Background of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: sliding window oversampling
- System performance enhancements: temporal pulse coding

SPAD focal plane array reliability: 40°C stress

- Initial reliability tests at nominal operating temperature (40°C) and PDE (20%), includes ROICs
 - 1 μs arm/disarm period is ~2X nominal range gate frequency
 - Interval tests are for average DCR for entire 1024 pixel SPAD focal plane array at 40°C
- No significant degradation in DCR performance for ~6000 hours

Reliability: 65°C and 85°C stress, 40°C test

- Test included FPAs with range of initial DCR average values for 85°C aging
 - No clear correlation between beginning-of-life DCR and aging behavior
- 85°C stress found to have ~13X acceleration factor relative to 40°C stress
 - Aging acceleration assessed by analysis of voltage margin below DCR runaway at high bias

ISSW2024 - The International SPAD Sensor Workshop 2024

Reliability Summary

- No systematic degradation of DCR for aging at 40°C (6000 hrs) and 65°C (3000 hrs)
- Initial evidence of DCR degradation with 85°C aging by 3000 hours
 - Acceleration factor estimated from voltage margin below DCR runaway
 - $\circ~$ 13X acceleration from 40°C to 85°C \rightarrow effective activation energy E_a ~ 0.55 eV
 - \circ E_a ~ 0.7 0.8 eV for discrete SPADs aged at fixed bias and higher temp (150°C 200°C)
- Worst-case lifetime estimate: ~40,000 hrs (at 40°C) from ~3000 hrs (at 85°C) x 13
 - Comfortably exceeded lidar mission profile of ~10K 20K hours operation
 - Could increase lifetime by 2X per 10°C decrease (but more power dissipation)
- Small fraction (~5%) of FPAs exhibited early degradation
 - Manufacturing maturity and screening methods would be key to eliminating early degradation

Presentation Outline

- Background of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: sliding window oversampling
- System performance enhancements: temporal pulse coding

Resolution enhancement with oversampling

- For Geiger-mode histogramming, use clusters of neighboring pixels for single point cloud point
- Default scheme: non-overlapping windows along vertical direction of SPAD array
- Oversampling: overlap sliding windows → data extraction at native pixel resolution
 - Key benefit: exploits spatial correlations at native pixel resolution
 - Can implement selectively using same raw data, e.g., in specific regions of interest
- Azimuthal oversampling to increase point density in horizontal direction

Default superpixel sliding window

Higher resolution oversampling scheme

ISSW2024 - The International SPAD Sensor Workshop 2024

26

Earlier literature on oversampling with windowing

• Use oversampling to extract information at length scales smaller than point spread function

• "Sub-volume" information can be recovered from larger imaging window using multiple sliding window samples

ISSW2024 - The International SPAD Sensor Workshop 2024

Optical coherence tomography lateral over-sampling (2017)

Fig. 1. A schematic diagram of L = 3 lateral oversampling. Each oversampled signal *Vi* consists of independent signals from *L* subvolumes (*S*, to *S*_{L + *v*,l}) with a 2/3 overlap between volumes which share signals Si to *S*_{L + *k*2} with the previous volume [15]. The red rectangle indicated the shared volume which can be isolated from appropriately combining the oversampled signals.

$$\begin{bmatrix} V_1(t) \\ V_2(t) \\ V_3(t) \\ \vdots \\ V_L(t) \end{bmatrix} = \begin{bmatrix} a_1 & \dots & a_L & 0 & 0 & 0 & 0 & 0 \\ 0 & a_1 & \dots & a_L & 0 & 0 & 0 & 0 \\ 0 & 0 & a_1 & \dots & a_L & 0 & 0 & 0 \\ \vdots & & & & & & \vdots \\ 0 & 0 & 0 & 0 & 0 & a_1 & \dots & a_L \end{bmatrix} \begin{bmatrix} S_1(t) & S_2(t) & S_2(t) & \dots & S_{2L-1}(t) \end{bmatrix}^T$$

27

High resolution with oversampling: close range

- Oversampling provided 3072 x 512 image for 60° x 10° swath
 - 0.02° x 0.02° angular resolution with 50 ms acquisition time 0

High resolution with oversampling: long range

- 512 x 512 image for 10° x 10° swath with 0.02° x 0.02° resolution in 8 ms
 - Sufficient resolution for dozens of points on a pedestrian at 200 m

ISSW2024 - The International SPAD Sensor Workshop 2024

Presentation Outline

- Background of InGaAs/InP SPAD array development for Geiger-mode lidar
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- System performance enhancements: sliding window oversampling
- System performance enhancements: temporal pulse coding

Nov. 9, 2023

(19) United States

TACHWALI et al.

(12) Patent Application Publication (10) Pub. No.: US 2023/0358865 A1

(43) Pub. Date:

Publication Classification

Range ambiguity with periodic lidar range gates

Range ambiguity due to aliasing effects resulting from reflections

ISSW2024 - The International SPAD Sensor Workshop 2024

Pulse coding using laser pulse timing offsets

- For data frame of P pulses, introduce sequence of pulse timing offsets
- Decode for 0th order range returns by subtracting pulse offset within a given lidar frame
 - For appropriate offset sequence, higher order returns are spread out to only one count per time bin
- To decode for Nth order range returns, use Nth cyclic variation of Oth order code

0th order decoding sequence [1, 3, 0]

1st order decoding by cyclic variation:

ISSW2024 - The International SPAD Sensor Workshop 2024

Summary of Cyclic Pulse Coding

- Temporal offset pulse coding eliminates range aliasing effects
 - Returns outside target range gate do not coincide after decoding
 - \circ 0th order code extracts returns in 0th order range (0, R_{rg})
- Pulse coding provides dramatic range enhancement
 - Set of P pulses measure returns to distance $P \cdot R_{rg}$
 - Nth order cyclic permutation of 0th order code extracts returns from Nth order range (N \cdot R_{rg}, (N+1) \cdot R_{rg})
- Effectively allows use of multiple pulses in flight at the same time
- Ideally suited to Geiger-mode lidar
 - Coincidence processing already incorporates P pulses per resolution element
- Can also make use of receiver range gate timing to enhance long-range detection
 - Delay arming of range gate to favor detection of objects at longer ranges

SWIR SPAD-based lidar summary

- SPAD-based rotating two-transceiver lidar sensor design for AV fleets
- Employed 512 x 2 quasi-1D SPAD arrays coupled to laser diode line illumination
- Pilot production volumes showed good SPAD performance and array uniformity
- SPAD-based focal plane array reliability shown to meet AV mission profile
- Oversampling techniques applied to Geiger-mode data shown to increase resolution by 25X
- Pulse coding eliminated range ambiguity effects and provided dramatic range enhancement
- AV fleets have different needs (and business models) than consumer vehicles
 - Roof-mounted rotating lidar not desirable for consumer vehicles, but effective for AV fleets
- Architecture impact on cost: it's not about InGaAs it's the large-format arrays
 - Significant further pitch reduction necessary to address cost reduction with this architecture

Acknowledgment

These results are the output of an incredible team of scientists and engineers that I have worked with for many years.

I'm grateful to all of my former colleagues who made this work possible at Argo AI and Princeton Lightwave.

Thank you!

Thank you!