

Developing InP SWIR SPAD arrays for an automotive Geiger-mode lidar **ISSUE AND AND AND AND AND AND AND AND SURFACE OF SPACE AND SENSOR WORKShop 2024**

Mark Itzler June 5, 2024

InGaAs/InP SWIR SPAD development timeline
• Currently at **We LUMINAF**
• This presentation covers work done while at Argo Al (until Ian 2023)

- Currently at **DE LUMINAL**
-

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- SPAD array design and performance

 SPAD focal plane array reliability

 System performance enhancements: **sliding window oversampling**

 System performance enhancements: **temporal pulse coding**

 System performance System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

Legacy SPAD Focal Plane Array: 128 x 32 with 50 µm pitch
• Initial InP-based SPAD array technology for camera products from Princeton Lightwave
○ State-of-the-art was 128 x 32 format with 50 µm pixel pitch

- -

Digital SPAD detection vs. analog APD detection

Single-photon detection provides "digital" response ("photons to bits")

Analog detection using linear-mode avalanche photodiodes (APDs)

Statistical sampling with Geiger-mode lidar

- Statistical analysis of time-of-flight returns with high repetition rate pulses
	-
	- Correlated counts provide high probability of detection for signal returns

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- SPAD array design and performance

 SPAD focal plane array reliability

 System performance enhancements: sliding window oversampling

 System performance enhancements: temporal pulse coding

Figure 2024 The Minim System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

Key lidar system requirements for autonomous vehicles

Vertical imaging by continuous illumination and detection

- Cover vertical field of view with fixed 1D arrays: laser illumination and SPAD array detection
	- Angular resolution determined by receiver optics and detector pixel instantaneous field of view

Couple reflected 1D laser illumination to quasi-1D detector array

Use "super-pixels" to optimize trade-off between integrated signal (samples) and resolution

Horizontal imaging by high density azimuthal scanning

- Horizontal space-filling using rotating platform with high laser pulse rate
	- Average spatially (superpixels) and temporally (multiple pulses) to obtain Geiger-mode samples

High-level lidar architecture

- Meet requirements using two independent transceivers on same rotating platform
	- Mid-range with wider vertical field-of-view (VFOV), long-range with narrower VFOV
	- \circ Point the transceivers in opposite directions (180 \degree) to avoid crosstalk
- Both transceivers use the same Laser Diode Transmitter and SPAD-based Receiver

Lidar architecture and key assemblies

Lidar integration on vehicle

- Lidars were integrated as part of sensor suites including cameras and radar
- \sim 400 lidars delivered, roughly half for vehicle fleets

On-vehicle point cloud video

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- SPAD focal plane array reliability
• System performance enhancements: sliding window oversampling
• System performance enhancements: temporal pulse coding
• System performance enhancements: temporal pulse coding
888820 System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

SPAD detector design and integration

- Separate Absorption and Multiplication (SAM) InGaAs(P)/InP avalanche diode structure
- Design 512 x 2 SPAD arrays with reduced pixel pitch of 25 um
- Etched trenches for pixel isolation (optical and electrical)
- Sub-micron precision placement of 512 x 2 microlens array aligned to active diameters of <10 µm
- Wire-bonding to two 512 x 1 readout integrated circuits (ROICs) on either side of 512 x 2 SPAD array

512 x 2 SPAD array performance histograms (25°C)

- Array was 12.8 mm long \rightarrow primary variation due to V_{br} non-uniformity
-

10⁴ 10⁵

Dark Count Rate (Hz)

40

20

Overbias Voltage (V) ⁰ 1 4 ² ³ $0 \leftarrow 0$ 20% 20% \longrightarrow 40% means $D =$ $10⁴$ are \uparrow 10^3 $\sqrt{2.25 \text{ V}}$ 10^5 Mean PDE 25 kHz \longrightarrow and \longrightarrow $20\% \longrightarrow$ $-2.25V$

L311-01035 25C 220114 213340

ROIC 0

512 x 2 SPAD array spatial distribution of PDE (25°C)

● PDE spatial variation primarily due to breakdown voltage variation

L311-01035 25C 220114 213340

512 x 2 SPAD array performance histograms (40°C)

- DCR and PDE histograms for typical 1024 pixel SPAD array
-

A4-800 40C postseal 220615 172633

512 x 2 SPAD array spatial distribution of PDE (40°C)

● PDE spatial variation primarily due to breakdown voltage variation

○ No ROIC-level bias corrections in 1st generation ROIC

A4-800 40C postseal 220615 172633

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- **SPAD focal plane array reliability**
- SPAD array design and performance

 SPAD focal plane array reliability

 System performance enhancements: sliding window oversampling

 System performance enhancements: temporal pulse coding

■

_{Spape} coding

21 System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

SPAD focal plane array reliability: 40°C stress AD focal plane array reliability: 40° C stress

itial reliability tests at nominal operating temperature (40°C) and PDE (20%), includes ROICs

• 1 µs arm/disamm period is ~2X nominal range gate frequency

• Interval t

- Initial reliability tests at nominal operating temperature (40 $^{\circ}$ C) and PDE (20%), includes ROICs
	- 1 µs arm/disarm period is ~2X nominal range gate frequency
	-
- No significant degradation in DCR performance for \sim 6000 hours

Reliability: 65°C and 85°C stress, 40°C test

- Test included FPAs with range of initial DCR average values for 85°C aging
	- No clear correlation between beginning-of-life DCR and aging behavior
- 85 $\mathrm{^{\circ}C}$ stress found to have ~13X acceleration factor relative to 40 $\mathrm{^{\circ}C}$ stress
	- Aging acceleration assessed by analysis of voltage margin below DCR runaway at high bias

Reliability Summary

- No systematic degradation of DCR for aging at 40° C (6000 hrs) and 65 $^{\circ}$ C (3000 hrs) Liability Summary

lo systematic degradation of DCR for aging at 40°C (6000 hrs) and 65°C (3000 hrs)

initial evidence of DCR degradation with 85°C aging by 3000 hours
 \circ Acceleration factor estimated from voltage marg **Probability Summary**

• No systematic degradation of DCR for aging at 40°C (6000 hrs) and 65°C (3000 hrs)

• Initial evidence of DCR degradation with 85°C aging by 3000 hours

→ Acceleration factor estimated from voltag Liability Summary

lo systematic degradation of DCR for aging at 40°C (6000 hrs) and 65°C (3000 hrs)

initial evidence of DCR degradation with 85°C aging by 3000 hours

○ Acceleration factor estimated from voltage margin
- Initial evidence of DCR degradation with 85° C aging by 3000 hours
	- Acceleration factor estimated from voltage margin below DCR runaway
	- \circ $\;$ 13X acceleration from 40°C to 85°C \rightarrow effective activation energy ${\sf E_a}$ ~ 0.55 eV
	-
- ISSW2024 The International SPAD Sensor Workshop 2024

ISSW2024 The International SPAD Sensor Workshop 2024

ISSW2024 The International SPAD Sensor Workshop 2024

24

24

ISSW2024 The International SPAD Sensor Work
	-
	- \circ Could increase lifetime by 2X per 10 \degree C decrease (but more power dissipation)
	- Small fraction (\sim 5%) of FPAs exhibited early degradation
		- Manufacturing maturity and screening methods would be key to eliminating early degradation

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- SPAD array design and performance

 SPAD focal plane array reliability

 System performance enhancements: sliding window oversampling

 System performance enhancements: temporal pulse coding

■

 System performance System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

Resolution enhancement with oversampling

- For Geiger-mode histogramming, use clusters of neighboring pixels for single point cloud point
- **Default scheme: non-overlapping windows** along vertical direction of SPAD array
- Oversampling: overlap sliding windows \rightarrow data extraction at native pixel resolution
	- Key benefit: exploits spatial correlations at native pixel resolution
	- Can implement selectively using same raw data, e.g., in specific regions of interest
- Azimuthal oversampling to increase point density in horizontal direction

Higher resolution oversampling scheme

Earlier literature on oversampling with windowing

• Use oversampling to extract information at length scales smaller than point spread function

○ "Sub-volume" information can be recovered from larger imaging window using multiple sliding window samples

Radar range oversampling (2005) Optical coherence tomography lateral over-sampling (2017)

Vol. 8, No. 3 | 1 Mar 2017 | BIOMEDICAL OPTICS EXPRESS 1319

High resolution with oversampling: close range

- Oversampling provided 3072×512 image for 60 \degree x 10 \degree swath
	-

High resolution with oversampling: long range

- - o Sufficient resolution for dozens of points on a pedestrian at 200 m

Presentation Outline

- Presentation Outline
• Background of InGaAs/InP SPAD array development for Geiger-mode lidar
• Lidar system architecture with quasi-1D SPAD arrays
• SPAD array design and performance
- Lidar system architecture with quasi-1D SPAD arrays
- SPAD array design and performance
- SPAD focal plane array reliability
- SPAD array design and performance

 SPAD focal plane array reliability

 System performance enhancements: sliding window oversampling

 System performance enhancements: temporal pulse coding

System is a property of t System performance enhancements: sliding window oversampling
	- System performance enhancements: temporal pulse coding

Nov. 9, 2023

(43) Pub. Date:

 (51) Int. Cl.

Publication Classification

(19) United States

Range ambiguity with periodic lidar range gates

Range ambiguity due to aliasing effects resulting from reflections and trachival of all publication Publication (io) Pub. No.: US 2023/0358865 A1

Pulse coding using laser pulse timing offsets

- For data frame of P pulses, introduce sequence of pulse timing offsets
- Decode for 0th order range returns by subtracting pulse offset within a given lidar frame
	- For appropriate offset sequence, higher order returns are spread out to only one count per time bin
- To decode for Nth order range returns, use Nth cyclic variation of $0th$ order code

0 th order decoding sequence [1, 3, 0]

1 st order decoding by cyclic variation:

Summary of Cyclic Pulse Coding

- Temporal offset pulse coding eliminates range aliasing effects
	- Returns outside target range gate do not coincide after decoding
	- \circ $\,$ 0th order code extracts returns in 0th order range (0, $\rm R_{rg}$)
- Pulse coding provides dramatic range enhancement
	- Set of P pulses measure returns to distance P \cdot R_{rg}
- 9 Set of P pulses measure returns to distance P · R_{FK}

⊙ Nth order cyclic permutation of 0th order code extracts returns from Nth order range (N · R_{Fg}, (N+1) · R_{Fg})

 Effectively allows use of **multiple puls** ○ Nth order cyclic permutation of 0th order code extracts returns from Nth order range (N · R_{rg}, (N+1) · R_{rg})
	- Effectively allows use of multiple pulses in flight at the same time
	- Ideally suited to Geiger-mode lidar
		- Coincidence processing already incorporates P pulses per resolution element
	- Can also make use of receiver range gate timing to enhance long-range detection
		- **Delay arming of range gate** to favor detection of objects at longer ranges

SWIR SPAD-based lidar summary

- **SPAD-based rotating two-transceiver lidar** sensor design for AV fleets
- Employed 512 x 2 quasi-1D SPAD arrays coupled to laser diode line illumination
- Pilot production volumes showed good SPAD performance and array uniformity
- SPAD-based focal plane array reliability shown to meet AV mission profile
- **Oversampling techniques** applied to Geiger-mode data shown to **increase resolution by 25X**
- SPAD-based focal plane array reliability shown to meet AV mission profile

 Oversampling techniques applied to Geiger-mode data shown to increase resolution by 25X

 Pulse coding eliminated range ambiguity effects an Pulse coding eliminated range ambiguity effects and provided dramatic range enhancement ● Employed 512 x 2 quasi-1D SPAD arrays coupled to laser diode line illumination

● Pilot production volumes showed good SPAD performance and array uniformity

● SPAD-based focal plane array reliability shown to meet AV m
	- AV fleets have different needs (and business models) than consumer vehicles
		- Roof-mounted rotating lidar not desirable for consumer vehicles, but effective for AV fleets
	- - Significant further pitch reduction necessary to address cost reduction with this architecture

Acknowledgment

These results are the output of an incredible team of scientists and engineers that I have worked with for many years.

I'm grateful to all of my former colleagues who made this work
possible at Argo Al and Princeton Lightwave.
Thank you!
 $\frac{1}{2}$
 $\frac{1}{2}$ In grateful to all of my former colleagues who made this work
I'm grateful to all of my former colleagues who made this work
I'm grateful to all of my former colleagues who made this work
possible at Argo AI and Princeton possible at Argo AI and Princeton Lightwave.

Thank you!

Thank you! ISSW2024 - The International SPAD Sensor Workshop 2024