

High-speed, Underwater 3D Imaging with an In-Pixel Histogramming SPAD

<u>I. Gyongy¹</u>, R Zhang², G. Mora-Martín³, R.K. Henderson¹, G. Buller², A. Maccarone²

¹The University of Edinburgh, UK

²Heriot-Watt University, UK

³was with the University of Edinburgh, UK, now SCALAI, Spain

Applications of Underwater 3D Imaging

Inspection of installations

Autonomous underwater vehicle (AUV)

Harbour inspection

Vision in turbid water

Seafloor mapping

HSLIDAR sensor

- 32 × 64 macropixels
- 4 × 4 SPAD per macropixel
- In-pixel multi-event histogramming TDC
- 8 bins/histogram (>250ps bin width)
- Individual time gates per pixel
- Manual or automatic time gate control

[I. Gyongy, JSTQE 2023]

HSLIDAR sensor – automatic time gate adaptation

HSLIDAR sensor – externally controlled time gates

Correction for

- Left-right timing skew
- Histogram non-linearity

HSLIDAR sensor – measurements

Underwater scene

Results – centre of mass processing

Clear water (AL = 0.03)

Results – centre of mass processing (cont.)

AL = 1.6 (1/5 attenuation)

Results – centre of mass processing (cont.)

AL = 2.9 (1/18 attenuation)

AL = 4.1 (1/60 attenuation)

AL = 5.9 (1/360 attenuation)

Results – changes in histogram profile

Curve fitting

Exponentially modified Gaussian function

$$f(x;\mu,\sigma,\lambda)=rac{\lambda}{2}e^{rac{\lambda}{2}(2\mu+\lambda\sigma^2-2x)}\, ext{erfc}igg(rac{\mu+\lambda\sigma^2-x}{\sqrt{2}\sigma}igg)$$

Proposed for LIDAR through fog in

[Holtzhüter, H., Automotive LIDAR, 2021]

Can we use this to separate ballistic photons from target from backscatter and forward scatter?

Results – curve fitting

AL = 5.5, EMG fit

RGB

Results – curve fitting (cont.)

AL = 8.6, EMG fit

1/5400 (37dB) attenuation in laser power (one-way)

RGB

10 FPS

Flat target (Spectralon) captured using a single 1 ms exposure (CMM processing)

- 30 mW average power (lower for AL < 4)
- Target detected even at AL = 14.6

1/(2.2*10⁶) (127dB) attenuation in laser power (one-way)

Results – high resolution mode

Clear water

19

- High-speed underwater imaging with a dToF SPAD
- Reconstruction in highly scattering conditions (AL>5) is challenging
- Curve fitting is a promising alternative to centre-of-mass (CMM) peak extraction
- Target detection was demonstrated at AL>14
- Time gate adaptation and denoising is still to be explored

Innovate UK project "Underwater Single Photon Imaging System"

STMicroelectronics for chip fabrication