CMOS Flash LiDAR Sensors with In-pixel Zoom Histogramming TDC Architectures

Seonghyeok Park¹, Su-Hyun Han¹, Bum-Jun Kim¹, Jung-Hoon Chun², Jaehyuk Choi², **Seong-Jin Kim¹**

¹UNIST, Korea ²SolidVue, Korea

2024.6.5

Outline

- Introduction to LiDAR Sensors
- On-Chip Histogramming TDC Architecture
- Proposed In-pixel Histogramming TDCs w/ Measurement Results
 - Zoom hTDC Architecture
 - Quaternary Searching hTDC Architecture
 - Analog-Assisted SA hTDC
- Conclusions

Cameras in Our Life

CIS Market

UCIST

Emerging Application: Ranging

Ranging in Automotives

Solid-State LiDAR

Ref: SolidVue (LiDAR Sensor) SOSLAB (TX + Platform)

25 fps, 64-m range

120x30 FOV

Time-of-Flight for LiDAR

• To measure the round-trip time of emitted light for acquiring the distance

Detecting phase difference

BINSPIRED ADVANCED SENSOR

10

Direct Time-of-Flight (dToF)

Time-to-Digital converter

Detecting direct time difference

Single Photon Avalanche Diode (SPAD)

- Geiger mode operation (virtually infinite gain)
 → Possible to detect a single photon
- Digital output interface (pulse generation)

SPAD High Level Behavior

- Detected photons generate digital pulses.
- Not all the photons are detected (PDP).
- Pulses can also be generated in the dark (DCR).
- Jitter noise should be added.

Time-Correlated Single Photon Counting

Block Diagram of SPAD-Based LiDAR

LTLIS'

Data Rate of Flash dToF

- Assumption
 - Resolution: 160×120
 - Frame rate: 30fps
 - TDC: 10b
 - Repetition: 1MHz
 - Synchronous readout

UDIS'T

Data rate
 =160×120×10b×1M
 =192Gbps!!

On-Chip Histogramming TDC (hTDC)

N. Dutton, ISSCC 2015

IJCIIST

- Each bin has a corresponding counter to accumulate responses.
- Intuitive operation and possible to capture multi-echo simultaneously.
- Large memories are required. (# of counters = # of time bins)
- Suitable for column-parallel or single TDC architecture.

Two-Step Histogram

Histogram Scanning

BIO INSPIRED ADVANCED SENSOR

20

SA hTDC Architecture

Operating Principles [1/4]

Operating Principles [2/4]

Operating Principles [3/4]

Start	ToF=000	
DN <up td="" →<=""><td>ToF=100</td></up>	ToF=100	
DN>UP →	ToF=1 <mark>0</mark> 0	
DN>UP →	ToF=101	
Caaraa		
Coarse for - 5		

Operating Principles [4/4]

Two-Step Zoom hTDC

SPAD Design

SPAD Structure (110nm FSI)

Junction of P-well/Deep N-well

UDIST

SPAD Front-End

- Passive quenching/recharging circuit
- Multiple SPADs for coincidence detection
- Monostable circuit for serialization

Window Generator

- Window generator creates a time-gate window, which filters the SPAD pulses.
- It governs the duration and location of the time bin depending on the previous ToF value.
- All T-FFs are reset to the ToF value.

BINSPIRED ADVANCED SENSOR

LICIIS

Chip Photograph

- Fabricated in 110nm BSI
- 5 SPADs per pixel
- Chip size: 7.03 × 5.9mm²
- Pixel pitch: 60 µm
- Spatial resolution: 100 × 76
- TDC resolution: 5 ns / 300 ps

Under review

Issues in Zoom hTDC Architecture

- Synthesis of 9 subframes: low frame rate, motion artifact
- Low signal to background ratio (SBR)
- Slow SBR improvement
- Phase detection error by
 background light
 → Need to have another
 background sub-frame

Quaternary Search hTDC

- The whole range is divided by four.
- UP and DN bins are compared to determine ToF[MSB].
- Either counter A or B determines ToF[MSB-1].

S. Park, ISSCC 2022

ITLIE.

171;21

Time-Gated Δ-Intensity Phase Detection

ייבורונו

Time-Gated Δ-Intensity Phase Detection

Time-Gated Δ-Intensity Phase Detection

ITLIE.

Pixel Architecture

- 6 SPADs w/ AFE & masking mem
- Coincidence
 detection circuit
- Two 9-b UDC for quaternary search
- Timing generator for time bin management
- Clock repeater shared by four neighbor pixels

Clock Generator

BINSPIRED ADVANCED SENSOR

44

171121

INSPIRED ADVANCED SENSOR

Fabricated Prototype

- Fabricated in 110nm FSI
- 6 SPADs per pixel
- Chip size: 7.03 ×
 5.9mm²
- Pixel pitch: 75 µm
- Spatial resolution:
 80 × 60
- TDC resolution:
 5 ns / 100 ps

Depth Image

Captured in 30fps w/ 30klux background light

Other Issues in Previous hTDCs

Analog-Assisted Zoom hTDC

S.-H. Han, ISSCC 2024

- Challenges in reducing pixel size & power consumption
 - 1. In-pixel SA hTDC operation in voltage domain 🙂
 - 2. Digital counter-based TG \rightarrow Analog-TG (TAC + SAR ADC) \odot
 - 3. Digital UP/DN Counter \rightarrow Analog Counters \bigcirc
- Capacitors are located under SPAD device thanks to BSI technology ⁽²⁾

Challenges in Analog-Assisted Zoom hTDC

- Challenges in pixel mismatch in the analog-assisted circuits due to variations in capacitor size, current source, etc. 😣
- Solutions: Self-calibration
 - TAC + Self-Referenced SAR ADC ③
 - Analog Counters + Self-Referenced SS ADC ③

1. T/A Conversion

2. A/D Conversion & Histogram

LICIIS

1. T/A Conversion

2. A/D Conversion & Histogram

1. T/A Conversion

2. A/D Conversion & Histogram

IJCIiS

1. T/A Conversion

2. A/D Conversion & Histogram

Zooming of the voltage range by $\times \mathbf{2}$

Conceptual Operation: Error Prediction

1. T/A Conversion

2. A/D Conversion & Histogram

1. T/A Conversion

2. A/D Conversion & Histogram

1. T/A Conversion

2. A/D Conversion & Histogram

Conceptual Operation: Fine Step

Indirect ToF method

Phase shift of time bin $\rightarrow V_{ToF}$ offset generation based on ToF_C[0] value

Block Diagram of Proposed Sensor

Schematic of Self-Referenced SAR ADC

- Mismatches between pixels due to PVT variation 😣
- In MC simulation with a 100fF of C_T, $\sigma_{V_{TOF}} \sim 72 \text{mV} > 1 \text{LSB}$ (50mV)

Automatic Calibration by Self-Reference

 Auto-Correction: generating both signal V_{ToF} and referenced voltage (V_{REFL}) in the same TAC. ☺

 $D_{OUT1} = D_{OUT2}$

BINSPIRED ADVANCED SENSOR

Mismatch in Analog Counter

- A mismatch between pixels of step size due to V_{TH} & capacitor variation \bigotimes
- It is important to accurately read out the phase intensity stored in analog counters to calculate ToF_{FINE}.

Conventional Single-Slope ADC

Self-Referenced SS ADC

Chip Micrograph

- Fabricated in 110nm BSI
- A single SPAD per pixel
- Chip size: 7.08 × 5.24mm²
- Pixel pitch: 35 µm
- Spatial resolution: 160 × 120
- TDC resolution: 10 ns / 230 ps

Indoor Depth Image

Depth image taken at a 10fps under indoor condition

Comparison of Three hTDCs

	SA hTDC w/ Digital Counter	QS hTDC w/ DigItal Counter	Analog Assisted SA hTDC
Technology	110nm BSI	110nm FSI	110nm BSI
Pixel array	100 × 76	80 × 60	160 × 120
Chip size	7.0 × 5.9mm ²	7.0 × 5.9mm ²	5.9 × 5.2mm ²
hTDC area	2700µm²	3600µm²	520µm ²
TDC resolution	Coarse 10ns ¹ Fine 300ps	Coarse 5ns ¹ Fine 100ps	Coarse 10ns ¹ Fine 230ps
Maximum distance	50m (designed: 96m)	45m	24m
Depth precision	10.5cm	1.5cm@2m	2.8cm@7m
Depth nonlinearity	4.5cm	2.5cm@2m	4.8cm@7m
Power consumption	104mW@40klux	132mW	60mW
Frame rate	10fps@10m, 40klux	30fps@10m, 30klux	10fps@10m, 6klux
# of TDCs	7600	4800	19200

¹Estimated equivalent value from measurement results

Thank you for your attention!

Any questions?

