A New Vision Chip with SPAD Imaging and Spiking Neural Network Processing

Liyuan Liu liuly@semi.ac.cn

Institute of Semiconductors, Chinese Academy of Sciences, Beijing, China

ISSW2024 @ Italy, Trento

Background

- Chip Architecture
- Key Techniques
- Results and Comparison

Discussion

Outline

Background

- Chip Architecture
- Key Techniques
- Results and Comparison

Discussion

Motivation

Edge machine vision applications

- Agile drone
- Intelligent robots
- Autonomous vehicles
- Requirements
- Versatile (2D/3D/HDR)
- Intelligent
- Energy efficient
- Small size

High dynamic range

Complex terrain

Obstacles

Limited power supply

Necessity for 2D/3D Vision

Edge machine vision applications

- Agile drone
- Intelligent robots
- Autonomous vehicles
- Requirements
- Versatile (2D/3D/HDR)
- Intelligent
- Energy efficient
- Small size

A single chip with 2D/3D vision

Necessity for Sensing and In-situ Processing

Edge machine vision applications

- Agile drone
- Intelligent robots
- Autonomous vehicles
- Requirements
- Versatile (2D/3D/HDR)
- Intelligent
- Energy efficient
- Small size

A single chip with sensing and intelligent in-situ processing ability

Vision Chip Concept

Vision chip integrates image sensor, memory and vision processor. It can acquire visual information and perform in-situ processing.

Vision chips are a key technology for enabling edge vision and IoT applications

Challenge

Current vision chips perform visual acquisition, transmission, and processing in the form of multi-bit real-valued data.

- High-speed 2D/3D imaging
- Real-time intelligent processing
- Limitations of power supply

• Large data volume

- Complex computation
- High cost for 2D/3D vision
- High latency and power

A new paradigm for future vision chips is urgently needed as performance gains from the process are not enough to meet demand.

Challenges

The Human Visual System

A vision chip adopts full spiking visual flow to mimic the human visual flow.

Proposed Bio-inspired Spiking Vision Chip

The bio-inspired spiking vision chip integrates a spike-based image sensor and a processor to mimic the human visual system and realize a full spiking visual flow.

Our Approach

- Versatile spike-based Imaging and Processing
- Decrease Data Volume and Computation Load
- Spiking Vision Processor
 Spiking ISP and SNN-based intelligent recognition
- Adaptive Imaging Adjustment

Versatile vision ability with low latency!

Advantage of Spiking Vision Chip

Traditional vision chip

🙁 large data volume

- **Complex ALU (MAC)**
- **②** large latency and high cost

VS.

SPAD Spiking vision Image Sensor processor

Spiking vision chip

SNN

PE

- &

Iow data volume

Spikes

Simplified ALU (ACC)

☺ low latency and compact size

Background

Chip Architecture

Key Techniques

Results and Comparison

Discussion

Chip Architecture

- SPAD image sensor \rightarrow Naturally generate spike-based 2D/3D imaging data
- Spiking vision processor → Reconfigurable for preprocessor and SNN processor
- Processor-MPU-Configurable SPAD image sensor → System-level feedback adjustment

Spiking Visual Flow

Bio-inspired full spiking visual flow \rightarrow low end-to-end latency \rightarrow light-adaptation

- SPAD imaging data and spike-based computing → versatile intelligent 2D/3D vision
- Spiking map stream → regular data flow for dynamic reconfigurable design

On-chip Feedback Adjustment

Light change estimation
 Subsampled

8×8 pixel data

 \rightarrow detect CNT

changes

→ Programmable threshold setting

Advantage of Spiking Vision Chip

SPAD-based spiking vision chip

Feature:

- 1) Low data volume
- 2) Spike-based computing

- 3) Low latency
- 4) Structured spiking map

Advantages:

- Decrease hardware cost
- **Simplified ALU (ACC)**
- Instant feedback adjustment
- **C** Time-divided multiplexing

reconfigurable design

Key Techniques to Spiking Vision Chip

Outline

Background

Chip Architecture

Key Techniques

- SPAD image sensor
- Reconfigurable spiking vision chip
- Spike-based processing algorithm

Results and Comparison

Discussion

Outline

Background

Chip Architecture

Key Techniques

- SPAD image sensor
- Reconfigurable spiking vision chip
- Spike-based processing algorithm
- Results and Comparison

Discussion

Configurable Adaptive SPAD Imaging

Gated pixels

- \rightarrow Configurable exposure time
- Rolling-shutter operation
- \rightarrow Stabilize SPAD array bias

Adaptive

→ Adjust imaging parameters based on visual processing results

- Gated pixel structure
 - External reset
 - Passive quench

- Configurable gating
 - via SEL & RST

Configurable Imaging Mode

- Configurable gating enables
- 1. adaptive 2D imaging
- 2. iToF based 3D imaging
- 3. dim imaging ability
- 4. color imaging w. RGB color filter

Outline

Background

Chip Architecture

Key Techniques

- SPAD image sensor
- Reconfigurable spiking vision chip
- Spike-based processing algorithm
- Results and Comparison

Discussion

Reconfigurable Spike-based Processing

Spiking Neuron: Integrate-and-Fire (IF) Neuron

Spiking neuron model

Input/output: spikes, 1 bit

W: synapses weight, 8bit

Vm: membrane potential, 13~16bit

 τ : firing threshold, 1bit

if $V_m(t) \ge \tau$, $S_o(t) = 1 \& V_m(t) = 0$

Fire-reset operation

Processing Element (PE)

PE offers IF neuron computing, flexible local data access, and nearby data sharing. 27/47

IF Neuron for Preprocessing

IF neuron model with temporal filtering

f-function:

- 1) 2D visual signal enhancement e.g. $f = log_{1-PDE}(\frac{1-R}{1-\Delta t \times DCR})$
- 2) 3D visual reconstruction

Feature of PE for preprocessing:

- 1. Pixel-wise
- 2. Temporal accumulation
 - 3. Flexibly programmable ALU
 - 4. I-F process

PE for Preprocessing

IF Neuron for SNN

IF neuron model with dense synaptic connection

Dense connect $k \times k \times C_{in} \times C_{out}$ (e.g. $3 \times 3 \times 16 \times 64$)

Weight kernel Shared within layer Feature of PE for preprocessing:

- 1. Accelerate synapse integration
- 2. Increase local data reuse
 - 3. Efficient data access
 - 4. I-F process

PE for SNN

PE Chain Parallel Computing

Nearby data sharing

Up to 7×7 weight kernel size

PE-chain column-parallel computing

PE-chain length 8, 16, 32, 64, 128, 256

Outline

Background

Chip Architecture

Key Techniques

- SPAD image sensor
- Reconfigurable spiking vision chip
- Spike-based processing algorithm
- Results and Comparison

Discussion

2D Visual Signal Enhancement

2D depth imaging reconstruction

Temporal accumulation ∑_t
 Denoise function *f*

$$f(R) = log_{1-PDE}(\frac{1-R}{1-\Delta t \times DCR})$$

Correct the effect of DCR & PDE variation

For weak lighting condition, preprocessing solves signal from noise

3D Visual Reconstruction

3D depth imaging reconstruction

Depth-solving function:

d

 $a = CNT_0 - CNT_180$ $b = CNT_90 - CNT_270$

$$= \frac{c}{8f} \begin{cases} \frac{b}{a+b} & a > 0 \& b > 0, \\ \frac{-a}{b-a} + 1 & a < 0 \& b > 0, \\ \frac{b}{a+b} + 2 & a < 0 \& b < 0, \\ \frac{a}{a-b} + 3 & a > 0 \& b < 0 \end{cases}$$

- Modulate frequency f
- Several exposures for each phase
 - → obtain light intensity (avalanche count CNT)

Solve and encode depth information into rate-coding spike output

Spiking Convolutional Neural Network

- Hierarchical neural network
 Convolutional layer (Conv) pool layer (pool) full connect layer (FC) spike counting layer (SC)
- Training method →Converted from a well-trained real-value CNN with the same network structure

■ Network structure2D classificationOutputconv5-12, avg-pool/2, conv5-64,
avg-pool-2, FC-10Confidence of
digits 0-9 (MNIST)3D localizationOutputConv64×1-1Horizontal and
depth position (X, Z)

On-chip deployment
Quantized weights and cut off outlier

Outline

Background

- Chip Architecture
- Key Techniques
- Results and Comparison

Discussion

Chip Microphotograph

	Specifications				
Technology	180nm CMOS				
Clock frequency	80 MHz				
Supply voltage	1.8V (Logic), 11V (VHH), 0.3V (VG)				
SRAM	256 kB (Data), 64 kB (Inst)				
Imaging rate	100,000 SMps				
PE array	256				
	Preprocessor	SNN processor			
# neurons	256	1024			
Peak Performance	20.48 GSOPS	81.9 GSOPS			

Measurement Setup

Experimental setup: Object for imaging LCD for classification

Different lighting conditions and noise level

is simulated by setting:

- screen brightness of LCD
- screen contrast of LCD
- dataset picture contrast

Test board

Measured Imaging Results

2D imaging

- Dynamic range 100 dB
- 15.75% PDE @ 503 nm
- 3D depth imaging error 2.7cm
- 2D color vision and dim vision ability
- dim-vision classification @0.02lux

MNIST Classification

Bright vision

- A 5-layer SCNN
- 99.33% Acc. 300 infer/s @ MNIST

Dim vision w. preprocessing

- Efficiently improve the SNR
- Merely 3.9% Acc. loss @ 20 mlx
- ► ~4× latency improvement

Spike-based Imaging Signal Enhancement

On-chip approximation computation with fixed-point data representation can realize similar improvements on SNR.

@0.02lux

w./o Enhancement Float-point

w./o Enhancement Fixed-point approximation computation

Obstacle Localization

State-of-the-Art Comparison

	ISSCC-2017(Sony)	JSSC-2019	ISSCC-2021(Sony)	Ours
Process	90 nm 1P4M/	130nm 1P6M/	65nm/	180nm 1P8M
	40nm 1P7M	130nm 1P6M	22nm	
Integration	Stacked BSI	Stacked BSI	Stacked BSI	Single chip, Fl
Photoreceptor	PD	PD	PD	SPAD
Resolution	1296×976	1024×769	4056×3040	128×128
Dynamic range	80dB	54dB	-	100dB
Frame rate	60fps	340fps	120fps	100000 fps
Temporal resolution	16.7ms	2.9ms	8.3ms	10µs
Vision mode	2D vision	2D vision	2D vision	2D vision
				Dim vision
				3D depth vision
Processor architecture	PE array	PE array	ISP + CNN DSP	PE array + MPU
Parallelism	1034	3072	2304	1024
Bit-width	1/4	8	8/16/32	1/8/16
On-chip memory	168KB	171KB	9 MB	256KB
CV	Spatial filtering	Spatial filtering	Signal processing	Temporal filtering
	Morphology	Motion detection		
NNs	N/A	N/A	CNN	SNN
Light-adaptation	No	No	No	Yes (3.85µs)
Clock frequency	108MHz	80MHz	262.5MHz	80MHz
Peak performance	140GOPS@4bit	61GOPS@8bit	1210GOPS@8bit	81.9GOPS@1bit

Summary

A Vision Chip is proposed:

- Full spiking visual flow based on SPAD imaging and spikebased computing
- Configurable gated SPAD image sensor
- Reconfigurable spike-based vision processor

Measurement results show:

- Versatile visual capabilities (2D/3D/dim vision)
- 99.3% Acc. and 300 infer/s @ MNIST classification
- Merely 3.9% Acc. loss @ 20 mlx
- 1.68 cm obstacle detection error
- 3.85 μs self-adaptation for ambient light changes

Outline

Background

- Chip Architecture
- Key Techniques
- Results and Comparison

Discussion

Discussion

Future vision chip

SPAD device array → High resolution → High fill factor

Low-level in-pixel processing circuits → Denoise preprocessing → Extract ROI

High-level intelligent processor →AI-based signal enhancement →More bio-inspired mechanisms

Thanks! Q&A