A PVT-Insensitive Body-Biased Time-to-Digital Converter in 28nm FD-SOI CMOS Technology

Yining Wang¹, Hanning Mai^{1,2}, Yining Wang¹, Robert K.Henderson¹

1 School of Engineering, The University of Edinburgh, United Kingdom 2 Now with Sony EUTDC, Trento, Italy

Outline

Introduction – dToF sensor and FD-SOI

• Architecture of the TDC pixels and the DLL

• Experimental results

Conclusion

Direct Time-of-Flight (dToF) Systems

... in Different Depth Scenes

Direct Time-of-Flight (dToF) Systems

Process, Voltage, Temperature (PVT) variation

Conventional PVT-insensitive TDC Design

This Work

- Planar technology
- Lower leakage current
- Lower process variability
- Vertical double gate structure

Fully Depleted Silicon-on-Insulator (FD-SOI)

[STMicroelectronics]

This Work

- Planar technology
- Lower leakage current
- Lower process variability
- Vertical double gate structure
- Efficient Vth modulation
- SPAD integration capability

Chip Proposed

Manufactured in 28nm FD-SOI CMOS

THE UNIVERSITY of EDINBURGH

DLL-based TDC Architecture

DLL-based TDC Architecture

Body-biased Delay Element

TDC Range 0 (0.87ns)

THE UNIVERSITY of EDINBURGH

CMOS Sensors & Systems Group

TDC Range 1 (1.76ns)

THE UNIVERSITY of EDINBURGH

CMOS Sensors & Systems Group

TDC Range 2 (2.24ns)

THE UNIVERSITY of EDINBURGH

CMOS Sensors & Systems Group

DLL-based TDC Architecture

512 tap: 15ns range / 66.66MHz

[G.de Stree et al. JSSC 2017]

DLL Measurement

Readout token gen SPAD enable buffer

Experimental Setup

Propagation delay time against control voltages

- Open-loop Configuration
- Tunning range: ~15.5ps/bin

DLL Phase Skew vs. Supply

14x smaller variations in closed-loop DLL under 10% VDD change

DLL Phase Skew vs. Freq

Phase skew only changes 0.12ns against 2ns STOP period change (20% frequency variation)

Duty cycle Full Sweep

Average duty cycle: 49.52%

TDC Electrical Measurement

The SPAD_IN of the test TDC pixel is driven by an FPGA, allowing for a 15ps delay step.

TDC Bin Size Electrical Measurement

Estimated bin size = COM difference/delay difference

		VDD		
IDC Range		0.97V	1V	1.03V
Closed-loop estimated bin size (ps)	Short	52.46	54.61	51.418
	Middle	110.02	110.13	110.15
	Long	140.68	140.58	140.51
Open-loop estimated bin size (ps)	Short	55.20	47.47	41.15
	Middle	110.57	105.90	99.20
	Long	147.99	140.37	127.57

TDC Code Density Test

THE UNIVERSITY of EDINBURGH

TDC Non-linearity

Range 0 (0.87ns)
Range 1 (1.76ns)
Range 2 (2.24ns)

	Range0	Range1	Range2
DNL(LSB)	+0.24/-0.09	+0.21/-0.15	+0.31/-0.11
INL(LSB)	+0.22/-0.26	+0.28/0	+0.31/0

CMOS Sensors & Systems Group

Conclusions

- First body-biased TDC pixel in 28nm FDSOI
- A novel DLL solution for the negative body-biased voltage generation
- Demonstrates the body-biased TDC's robustness against voltage and frequency variations
- Requires optical IRF characterisation with SPAD, variation assessment across the TDC pixel array

Performance Summary Table						
Technology		28nm FDSOI				
Histogram bins	16*11b					
STOP frequency		100MHz				
Pixel size	$12.02 imes 29.87 \mu m^2$					
TDC resolution/ps	54.6	110.1	140.5			
TDC range / ns	0.87	1.76	2.24			
TDC DNL / LSB	+0.24/-0.09	0.21/-0.15	+0.31/-0.11			
TDC INL / LSB	+0.22/-0.26	+0.28/0	+0.31/0			

THE UNIVERSITY of EDINBURGH

Thank you

