WORKSHOP PAPER
Plasmonic diffraction for the sensitivity enhancement of silicon image sensor
Atsushi Ono1,2, Kazuma Hashimoto1, Takahito Yoshinaga1, Nobukazu Teranishi2,3
1Graduate School of Integrated Science and Technology, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
2Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Hamamatsu, Japan
3Laboratory of Advanced Science and Technology for Industry, University of Hyogo, 1-1-2 Koto, Kamigori, Ako-gun, Hyogo, Japan

Abstract

The abstract of the document is not explicitly mentioned, but a summary can be generated based on the text provided. This work focuses on enhancing the Near-infrared (NIR) sensitivity of silicon-based image sensors without resorting to thick silicon layers, which degrade image quality due to pixel crosstalk. The study suggests using plasmonic diffraction, specifically through a multiple pyramid shape surface of silicon sensitive layer and metal gratings combined with highly reflective Deep Trench Isolation (DTI), to increase the effective silicon thickness and light propagation length, thereby improving NIR sensitivity. The findings underscore the potential of plasmonic enhancement in silicon image sensors, detailing the research conducted, the simulated performance improvements, and the overall significance of these advancements in NIR sensing technology.
Publisher: IISS (Int. Image Sensors Society)
Year: 2021
Workshop: IISW
URL: https://doi.org/10.60928/d0bb-uhiz

Keywords

Plasmonic diffraction, NIR sensitivity, Silicon image sensor,

References

1) S. Yokogawa, I. Oshiyama, H. Ikeda, Y . Ebiko, T. Hirano, S. Saito, T. Oinoue, Y . Hagimoto, and H. Iwamoto, "IR sensitivity enhancement of CMOS Image Sensor with diffractive light trapping pixels", Sci. Rep., 2017. https://doi.org/10.1038/s41598-017-04200-y
2) M. W. Knight, H. Sobhani, P. Nordlander, and N. J. Halas, "Photodetection with Active Optical Antennas", SCIENCE, 2011. https://doi.org/10.1126/science.1203056
3) M. W. Knight, Y . Wang, A. S. Urban, A. Sobhani, B. Y . Zheng, P. Nordlander, and N. J. Halas, "Embedding Plasmonic Nanostructure Diodes Enhances Hot Electron Emission", Nano Lett., 2013. https://doi.org/10.1021/nl400196z
4) A. Sobhani, M. W. Knight, Y . Wang, B. Zheng, N. S. King, L. V . Brown, Z. Fang, P. Nordlander, and N. J. Halas, "Narrowband photodetection in the near-infrared with a plasmon-induced hot electron device", Nat. Commun., 2013. https://doi.org/10.1038/ncomms2642
5) A. Takeda, T. Aihara, M. Fukuhara, Y . Ishii, and M. Fukuda, "Schottky-type surface plasmon detector with nano-slit grating using enhanced resonant optical transmission", J. Appl. Phys., 2014. https://doi.org/10.1063/1.4894150
6) B. Desiatov, I. Goykhman, N. Mazurski, J. Shappir, J. B. Khurgin, and U. Levy, "Plasmonic enhanced silicon pyramids for internal photoemission Schottky detectors in the near-infrared regime", Optica, 2015. https://doi.org/10.1364/optica.2.000335
7) M. Alavirad, A. Olivieri, L. Roy, and P. Berini, "High-responsivity sub-bandgap hot-hole plasmonic Schottky detectors", Opt. Express, 2016. https://doi.org/10.1364/oe.24.022544
8) M. Tanzid, A. Ahmadivand, R. Zhang, B. Cerjan, A. Sobhani, S. Yazdi, P. Nordlander, and N. J. Halas, "Combining Plasmonic Hot Carrier Generation with Free Carrier Absorption for High-Performance Near-Infrared Silicon-Based Photodetection", ACS Photonics, 2018. https://doi.org/10.1021/acsphotonics.8b00623
9) A. Ono, K. Hashimoto, and N. Teranishi, "Near-infrared sensitivity improvement by plasmonic diffraction for a silicon image sensor with deep trench isolation filled with highly reflective metal", Opt. Express, 2021. https://doi.org/10.1364/oe.428314
10) L. Gao, F. Lemarchand, and M. Lequime, "Refractive index determination of SiO2 layer in the UV/Vis/NIR range: spectrophotometric reverse engineering on single and bi-layer designs", J. Europ. Opt. Soc. Rap. Public., 2013. https://doi.org/10.2971/jeos.2013.13010
11) K. M. McPeak, S. V . Jayanti, S. J. P. Kress, S. Meyer, S. Iotti, A. Rossinelli, and D. J. Norris, "Plasmonic films can easily be better: Rules and recipes", ACS Photonics, 2015. https://doi.org/10.1021/ph5004237
12) A. D. Rakić, A. B. Djurišic, J. M. Elazar, and M. L. Majewski, "Optical properties of metallic films for vertical-cavity optoelectronic devices", Appl. Opt., 1998. https://doi.org/10.1364/ao.37.005271