WORKSHOP PAPER
A Thin-Film Pinned-Photodiode Imager Pixel with Fully Monolithic Fabrication and beyond 1Me- Full Well Capacity
Joo Hyoung Kim1,2, Francois Berghmans1, Abu Bakar Siddik1,2, Irem Sutcu1,2, Isabel Pintor Monroy1, Jehyeok Yu1,3, Tristan Weydts1, Epimitheas Georgitzikis1, Jubin Kang1,4, Yannick Baines1, Yannick Hermans1, Naresh Chandrasekaran1, Florian De Roose1, Griet Uytterhoeven1, Renaud Puybaret1, Yunlong Li1, Itai Lieberman1, Gauri Karve1, David Cheyns1, Jan Genoe1,2, Paweł E. Malinowski1, Paul Heremans1,2, Kris Myny1,2, Nikolas Papadopoulos1, Jiwon Lee1,5
1imec, Kapeldreef 75, 3001 Leuven, Belgium
2KU Leuven, 3001 Leuven, Belgium
3SKKU, 16419 Korea
4UNIST, 44919 Ulsan, Korea
5Hanyang University, 15495 Ansan, Korea

Abstract

This research demonstrates the development of a thin-film based pinned photodiode (TF-PPD) structure that exhibits reduced kTC noise and dark current while achieving high conversion gain (CG). The use of indium-gallium-zinc oxide (IGZO) thin-film transistor and quantum dot photodiode integrated sequentially on Si Read-Out Integrated Circuitry (ROIC) in a fully monolithic manner with the introduction of the photogate (PG) for PPD operation, leads to a photodiode with low noise performance and a high full well capacity (FWC) of up to 1.37 Me- with a 5 μm pixel pitch, which is 8.3 times larger than what the TFPD junction capacitor can store. This substantial FWC, together with inherent low noise characteristics, enables the TF-PPD to achieve a dynamic range (DR) of 100 dB.
Publisher: IISS (Int. Image Sensors Society)
Year: 2023
Workshop: IISW
URL: https://doi.org/10.60928/hihx-afrp

Keywords

Thin-Film Photodiodes, Pinned Photodiode, Monolithic Fabrication,

References

1) Takase, M.; Miyake, Y.; Yamada, T.; Tamaki, T.; Murakami, M.; Inoue, Y., "First demonstration of 0.9 μm pixel global shutter operation by novel charge control in organic photoconductive film", 2015 IEEE Intl. Elec. Dev. Meeting (IEDM), Washington, DC, USA, 2015, 2015. https://doi.org/10.1109/iedm.2015.7409799
2) Malinowski, P. E.; Pejović, V.; Lieberman, I.; Kim, J. J.; Siddik, A. B.; Georgitzikis, E.; Lim, M. J.; Hagelsieb, L. M.; Hermans, Y.; Monroy, I. P.; Song, W.; Basak, S.; Gehlhaar, R.; Roose, F. D.; Siskos, A.; Papadopoulos, N.; Thijs, S.; Vershooten, T.; Chandrasekaran, N.; Li, Y.; Soussan, P.; Genoe, J.; Heremans, P.; Lee, J.; Cheyns, D., "Image sensors using thin-film absorbers", Appl. Opt, 2023, 62, F21-F30, 2023. https://doi.org/10.1364/ao.485552
3) Malinowski, P. E.; Pejović, V.; Georgitzikis, E.; Kim, J. H.; Lieberman, I.; Papadopoulos, N.; Lim, M. J.; Hagelsieb, L. M.; Chandrasekaran, N.; Puybaret, R.; Li, Y.; Verschooten, T.; Thijs, S.; Cheyns, D.; Heremans, P.; Lee, J., "Colloidal quantum dot image sensors: a new vision for infrared", 2022 Intl. Elec. Dev. Meeting (IEDM), San Francisco, CA, USA, 2022, 2022. https://doi.org/10.1109/iedm45625.2022.10019470
4) Pejović, V.; Georgitzikis, E.; Lee. J.; Lieberman. I.; Cheyns. D.; Heremans. P.; Malinowski, P. E., "Infrared colloidal quantum dot image sensors", IEEE Trans. on Elec. Dev. 2022, 69, 2022. https://doi.org/10.1109/ted.2021.3133191
5) Lee, J.; Georgitzikis, E.; ii, Y.; Lin, Z.; Park, J.; Lieberman, I.; Cheyns, D.; Jayapala1, M.; Lambrechts, A.; Thijs, S.; Stahl, R.; Malinowski, P.E., "Imaging in shortwave infrared with 1.82 μm pixel quantum dot image sensor", 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, 2020. https://doi.org/10.1109/iedm13553.2020.9372018
6) Sim, K. M.; Yoon, S.; Cho, J.; Jang, M. S.; Chung, D.S., "Facile tuning the detection spectrum of organic thin film photodiode via selective exciton activation", ACS Appl. Mat. & Intf. 2018, 10, 2018. https://doi.org/10.1021/acsami.8b01437
7) Matsuo. T.; M. Shigeyasu.; Ban. A.; Imaya, A., "Advantages of IGZO oxide semiconductor", Symp. Dig. of Tech. Papers (SID), San Diego, CA, USA, Jun 2014, 45, 2014. https://doi.org/10.1002/j.2168-0159.2014.tb00023.x
8) Teranishi, N.; Kohono, A.; Ishihara, Y.; Oda, E.; Arai, K., "No image lag photodiode structure in the interline CCD image sensor", Proc. IEDM, 1982, 1982. https://doi.org/10.1109/iedm.1982.190285
9) Fossum, E. R., "Active pixel sensors: Are CCDs dinosaurs?", Proc. SPIE CCD’s Opt. Sens. III, 1993, 1900, 1993. https://doi.org/10.1117/12.148585
10) Lee, J.; Georgitzikis, E.; Hermans, Y.; Papadopoulos, N.; Chandrasekaran, N.; Jin, M.; Siddik, A. B.; Roose, F. D.; Uytterhoeven, G.; Kim, J. H.; Puybaret, R.; Li, Y.; Pejovic, V.; Karve, G.; Cheyns, D.; Genoe, J.; Malinowski, P. E.; Heremans, P.; Myny, K., "Thin-film image sensors with a pinned photodiode structure", Nat. Electron. 2023, 6, 2023. https://doi.org/10.1038/s41928-023-01016-9
11) Tanner, C. M.; Perng, Y.; Frewin, C.; Saddow, S. E.; Chang, J. P., "Electrical performance of gate dielectric films deposited by atomic layer deposition on 4H-SiC", Appl. Phys. Lett. 2007, 91, 2007. https://doi.org/10.1063/1.2805742
12) Seo, M.; Chu, M.; Jung, H,; Kim, S.; Song, J,; Bae, D.; Lee, S.; Lee, J.; Kim, S.; Lee, J.; Kim, M.; Lee, G.; Shim, H.; Um, C.; Kim, C.; Baek, I.; Kwon, D.; Kim, H.; Choi, H.; Go, J.; Ahn, J.; Lee, J.; Moon, C.; Lee, K.; Kim, H., "2.45 e-RMS low-random-noise, 598.5 mW low-power, and 1.2 kfps high-speed 2-Mp global shutter CMOS image sensor with pixel-level ADC and memory", IEEE J. of Solid-State Circ. 2022, 57, 2022. https://doi.org/10.1109/jssc.2022.3142436
13) Janbu, Ø.; Johansson, R.; Martinussen, T.; Solhusvik, J., "A 1.17-megapixel CMOS image sensor with 1.5 A/D conversions per digital CDS pixel readout and four in-pixel gain steps", IEEE J. of Solid-State Circ. 2019, 54, 2019. https://doi.org/10.1109/jssc.2019.2924337
14) Kalyanam, P.; Chapman, G. H.; Parameswaran, A. M., "Simulating enhanced photo carrier collection in the multifinger photogate active pixel sensors", Proc. SPIE 7875, Sensors, Cameras, and Systems for Industrial, Scientific, and Consumer Applications XII, 787508, San Francisco Airport, California, United States, 16 February 2011, 2011. https://doi.org/10.1117/12.876767
15) Wilk, G. D.; Wallace, R. M.; Anthony, J. M., "High-κ gate dielectrics: Current status and materials properties considerations", J. Appl. Phys. 2001, 89, 2001. https://doi.org/10.1063/1.1361065
16) Vitale, S. A.; Kedzierski, J.; Healey, P.; Wyatt, P. W.; Keast, C. L., "Work-function-tuned TiN metal gate FDSOI transistors for subthreshold operation", IEEE Trans. on Elec. Dev. 2011, 58, 2011. https://doi.org/10.1109/ted.2010.2092779
17) Kim. J. H.; Pejović, V.; Georgitzikis, E.; Li, Y.; Kim, J.; Malinowski, P. E.; Lieberman, I.; Cheyns, D.; Heremans, P.; Lee, J., "Detailed characterization of short-wave infrared colloidal quantum dot image sensors", IEEE Trans. on Elec. Dev. 2022, 69, 2022. https://doi.org/10.1109/ted.2022.3164997
18) Kim, W.; Park, C.; Lee, H.; Lee, I.; Lee, B., "A high full well capacity CMOS image sensor for space applications", Sensors, 2019, 19, 2019. https://doi.org/10.3390/s19071505
19) Zaitsu, K.; Matsumoto, A.; Nishida, M.; Tanaka, Y.; Yamashita, H.; Satake, Y.; Watanabe, T.; Araki, K.; Nei, N.; Nakazawa, K.; Yamamoto, J.; Uehara, M.; Kawashima, H.; Kobayashi, Y.; Hirano, T.; Tatani, K., "A 2-layer transistor pixel stacked CMOS image sensor with oxide-based full trench isolation for large full well capacity and high quantum efficiency", 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, 2022. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830372
20) Yun, J.; Lee, S.; Cha, S.; Kim, J.; Lee, J.; Kim, H.; Lee, E.; Kim, S.; Hong, S.; Kim, H.; Huh, J.; Kim, S.; Kakehi, K.; Kim, J.; Koo, J.; Cho, E.; Jeong, H.; Park, H.; Lee, K.; Ahn, J.; Yim, J., "A 0.6 ㎛ small pixel for high resolution CMOS image sensor with full well capacity of 10,000e- by dual vertical transfer gate technology", 2022 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), Honolulu, HI, USA, 2022, 2022. https://doi.org/10.1109/vlsitechnologyandcir46769.2022.9830254
21) Kwon, Y.; Seo, S.; Cho, S.; Choi, S.; Hwang, T.; Kim, Y.; Jin, Y.; Oh, Y.; Keel, M.; Kim, D.; Bae, M.; Km, Y.; Shin, S.; Hong, S.; Lee, S.; Park,H. W.; Kim, Y.; Koh, K.; Ahn, J., "A 2.8 μm pixel for time of flight CMOS image sensor with 20 ke- full-well capacity in a tap and 36 % quantum efficiency at 940 nm wavelength", 2020 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2020, 2020. https://doi.org/10.1109/iedm13553.2020.9371950
22) Brunetti, A. M.; Musolino, M.; Choubey, B., "Staggered pixel layout to reduce area and increase full well capacity in CMOS image sensors", IEEE Trans. on Elec. Dev. 2021, 68, 2021. https://doi.org/10.1109/ted.2020.3045386
23) Takayanagi, I.; Miyauchi, K.; Okura, S.; Mori, K.; Nakamura, J.; Sugawa, S., "A 120-ke- full-well capacity 160-µV/e- conversion gain 2.8-µm backside-illuminated pixel with a lateral overflow integration capacitor", Sensors, 2019, 19, 2019. https://doi.org/10.3390/s19245572
24) Kim, H.; Kim, Y. H.; Moon, S.; Kim, H.;Yoo, B.; Park, J.; Kim, S.; Koo, J.; Seo, S.; Shin, H. J.; Choi, Y.; Kim, J.; Kim, K.; Seo, J.; Lim, S.; Jung, T.; Park, H.; Jung, S.; Ko, J.; Lee, K.; Ahn, J.; Yim, J., "A 0.64 μm 4-photodiode 1.28 μm 50Mpixel CMOS image sensor with 0.98e- temporal noise and 20Ke- full-well capacity employing quarter-ring source-follower", 2023 IEEE International Solid- State Circuits Conference (ISSCC), San Francisco, CA, USA, 2023, 2023. https://doi.org/10.1109/isscc42615.2023.10067732
25) Murata, M.; Kuroda, R.; Fujihara, Y.; Aoyagi, Y.; Shibata, H.; Shibaguchi, T.; Kamata, Y.; Miura, N.; Kuriyama, N., "A 24.3Me− full well capacity CMOS image sensor with lateral overflow integration trench capacitor for high precision near infrared absorption imaging", 2018 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2018, 2018. https://doi.org/10.1109/iedm.2018.8614590