WORKSHOP PAPER
Physical Modeling and Parameter Extraction for Event-based Vision Sensors
Abstract
Latency and noise are crucial aspects of Event-based Vision Sensors. Yet, in simulators used to create synthetic event data these effects are predominantly modeled phenomenologically and are rarely calibrated to actual measurements or circuit simulations. This work presents a physics-based latency and noise model achieving strong resemblance with circuit simulations and measurements. The model is computationally efficient enough to be suitable for camera simulation. This enables accurate training data synthesis for algorithm development and guides sensor design.Keywords
Event-based Vision Sensors, Latency and noise modeling, Circuit simulations,References
1) P. Lichtensteiner et al., PhD thesis, ETH, 2006
2) G. Gallego et al., IEEE TPAMI, Vol. 44, No. 1, pp. 154-180, Jan. 2022
3) T. Finateu et al., IEEE ISSCC, pp. 112-114, Feb. 2020
4) Y. Suh et al., IEEE ISCAS, pp. 1-5, Oct. 2020
5) M. Guo et al., IEEE ISSCC, pp. 90-92, Feb. 2023
6) K. Kodama et al., IEEE ISSCC, pp. 92-94, Feb. 2023
7) H. Rebecq et al., CoRL, Oct. 2018, Oct. 2018
8) D. Gehrig et al., IEEE CVPR, pp. 3586-3595, June 2020
9) Y. Hu et al., IEEE CVPR, pp. 1312-1321, June 2021
10) X. Mou et al., Proc. IS&T EI, ISS-242, Jan. 2022
11) C. Posch et al., IEEE ISCAS, pp. 1572-1575, May 2011
12) B. McReynolds et al., Opt. Eng., 61(7) 074103, July 2022
13) K.S. Shanmugan and A.M. Breiphol, "Random Signals", Wiley, July 1988