WORKSHOP PAPER
A 2/3-inch Low Noise HDTV FT CCD-Imager for 1080i180, 1080p90 and 720p120 Scanning at Constant Image Diagonal
Peter Centen1, Holger Stoldt2, Jan Visser3, Jan T. Bosiers2
1Thomson Grass Valley, Kapittelweg 10, 4827HG Breda, The Netherlands.
2DALSA Professional Imaging, Eindhoven, the Netherlands
3NIKHEF, Amsterdam, the Netherlands

Abstract

A novel broadcast FT-imager is presented that supports the 1080i, 1080p and 720p HDTV scanning formats at constant image diagonal. For super slow motion applications in 1080i/p it scans in 180 interlaced fields/sec or 90 progressive frames/sec or 120 frames/second in 720p. The anti-alias filtering is in the charge domain, automatically adapted to the scanning format. The imager reaches a pixel rate of 223Mpixel/sec. The on-chip amplifier has a bandwidth >241MHz. At 112MHz it has a Noise Electron Density of NED=0.59 e2/MHz and after CDS, 8 electrons in 30MHz bandwidth.
Publisher: IISS (Int. Image Sensors Society)
Year: 2009
Workshop: IISW
URL: https://doi.org/10.60928/v1wc-0lpq

Keywords

FT-imager, HDTV scanning formats, noise electron density,

References

1) M. Morimoto et al, "A 2/3-inch 2 M-pixel IT-CCD image sensor with individual p-wells for separate V-CCD and H-CCD formation", ISSCC. Dig. of Tech. Papers, 1994. https://doi.org/10.1109/isscc.1994.344661
2) L. Kozlowski et. al, "A Progressive 1920x1080 Imaging System-on-Chip for HDTV Cameras", ISSCC Dig. Tech. Papers, 2005. https://doi.org/10.1109/isscc.2005.1494017
3) T. Honda et al, "Development of 2/3”-type 1-mega pixel Progressive Scan CCD for HDTV capable of high frame rate of 96fps", Proc. of the IEEE AIS workshop, 2005
4) P. Centen et al, "A 2/3-inch CMOS Image Sensor for HDTV Applications with Multiple High-DR Modes and Flexible Scanning", ISSCC Dig. Tech. Papers, 2007. https://doi.org/10.1109/isscc.2007.373519
5) T. Moelands et al, "A High Speed Sports Action Camera System", Dig. Of Tech. Papers IBC, 1998
6) H. Peek, "A Low Dark Current Double Membrane Poly-Si FT-technology for 2/3 Inch 6M Pixel CCD Imagers", Tech. Dig. IEDM, 1999. https://doi.org/10.1109/iedm.1999.824287
7) H.Stoldt et al, "CCD Imagers for Broadcast Applications", Tech. Dig. IEDM, 1996. https://doi.org/10.1109/iedm.1996.554124
8) J. Bosiers et al., "Technicall challenges and recent progress in CCD imagers", Nuclear Instruments and Methods in Physics Research, A 565, 2006. https://doi.org/10.1016/j.nima.2006.05.033
9) P. Centen, "Private communications", 2005, 2005
10) J. Hynecek., "Design and performance of a low-noise charge-detection amplifier for VPCCD devices", Electron Devices, IEEE Transactions on, Volume 31, Issue 12, 1984. https://doi.org/10.1109/t-ed.1984.21776
11) P. Centen, "CCD on-chip amplifiers: noise performance versus MOS transistor dimensions", Electron Devices, IEEE Transactions on, Volume 38, Issue 5, 1991. https://doi.org/10.1109/16.78399
12) P. Wong, "Technology and device scaling considerations for CMOS imagers", Electron Devices, IEEE Transactions on, Volume 43, Issue 12, 1996. https://doi.org/10.1109/16.544384
13) A. Krymski et al., "A 2 e Noise 1.3Megapixel CMOS Sensor", Proc. of the IEEE AIS workshop, 2003
14) H. Takahashi, "A 1/2.7-inch Low-Noise CMOS Image Sensor for Full HD Camcorders", ISSCC Dig. Tech. Papers, 2007. https://doi.org/10.1109/isscc.2007.373518