

Imaging with entangled photons

L. Gasparini¹, <u>M. Perenzoni¹</u>, H. Xu¹, L. Parmesan¹, M. Moreno Garcia¹, D. Stoppa⁴, B. Bessire², M. Unternährer², A. Stefanov², V.Mitev³ and D.L. Boiko³

> ¹Fondazione Bruno Kessler, Italy ²Institute of Applied Physics, University of Bern, Switzerland ³Centre Suisse d'Électronique et de Microtechnique CSEM, Switzerland ⁴now at AMS-Heptagon, Switzerland;

- Motivation
- Requirements for imaging with entangled photons
- SuperEllen imager design and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Motivation

- Requirements for imaging with entangled photons
- SuperEllen imager design and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

Conventional Optical Microscopy Limits

• Light as a wave: diffraction limits resolution

- Limit is the wavelength λ
 - With visible light: $\lambda/2$, about 250nm
 - Cells: ≈10um ⁽²⁾ Viruses: ≈100nm ⁽²⁾

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Beyond Rayleigh: SUPERTWIN Concept

- Light as a particle
- N entangled photons \Rightarrow de Broglie wavelength λ/N

N measurements with N detectors give N times improvement

SUPERTWIN

SUPERTWIN Concept & Goal

Advanced All-Solid State Optical Microscope Imaging Beyond the Rayleigh Limit

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

Motivation

• Requirements for imaging with entangled photons

- SuperEllen imager design and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

CMOS Single-Photon Imager

- Scattered entangled photons
 - Spread in space (non-local)
 - Simultaneous in time
- Single photon imager
 - Position + Time

Goal: extraction of Nth order correlation function G^(N)

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

1. Data recording

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

- 1. Data recording
- 2. Readout

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

TDC CODE

1. Data recording

- 2. Readout
- 3. Compression

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

1. Data recording

- 2. Readout
- 3. Compression
- 4. Coincidence detection

12

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

13

"WIN

Memory requirements – Full area correlations

• $G^{(k)} \rightarrow k$ -dimensional space

• Histogram size =
$$\frac{N_{pix}!}{k!(N_{pix}-k)!}$$

Hypothesis: 2G memory

Feasible up to:

− 32×32 array
→ G⁽³⁾
− 256×256 array
→ G⁽²⁾

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Memory requirements – Reduced area correlations

- $G^{(k)} \rightarrow k$ -dimensional space
- Histogram size = $\frac{N_{pix}!}{k!(N_{pix}-k)!}$
- Feasible up to:
 - $G^{(5)}$ with $N_{corr} = 16$
 - $-G^{(4)}$ with $N_{corr} = 24$
 - $-G^{(3)}$ with $N_{corr} = 48$
 - $G^{(2)}$ with $N_{corr} = 256$

Outline

- Motivation
- Requirements for imaging with entangled photons
- SuperEllen imager design and characterization
- G⁽²⁾ correlations in SPDC produced bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

SuperEllen SPAD Imager

- Previous SPAD+TDC designs:
 - Large pixel $>50\mu m$
 - Small FF < 3%</p>
 - Huge amount of data
- Pixel array based on TDC, target:
 - Low pitch
 - High FF
 - Fast readout

17

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

SuperEllen SPAD Imager

CMOS 150nm tech **SPAD:** p+/nwell **TDC:** 8b, 205ps **R-O:** row/frame skip

- Pixel array based on TDC, result:
 - Low pitch **44.6**μ**m**
 - High FF 19.5%
 - Fast readout 800kfps

Pixel and TDC Concept

- Synchronous SPAD precharge with disable SRAM
- Edge-sensitive START and gated operation
- Ring-oscillator based TDC with 2b interpolation

19

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Imager Readout Concept

- Row-wise "empty row detection"
- Current-based global threshold

SPAD Dark Count Rate (DCR)

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

Pixel/Array Timing Performance

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Demonstrator of Quantum Imager

- Frame rate in the 80-500 kfps range
- Real-time data compression exploiting sparsity of data
 - Raw frame = 1kB; compressed frame < 30B (typ) → 3% compression ratio
 - Address assignment performed by the FPGA
- Software-based calculation of correlation functions G^(N)

Outline

- Motivation
- Requirements for imaging with entangled photons
- SuperEllen fabrication and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

24

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Generation of bi-photons

- PPKTP: phase matching in type-0 SPDC
 - Energy conservation:
 - 1 ph @405 nm → 2 ph @~810 nm
 - Momentum conservation
 - Different patterns wrt temperature (with T_c critical temperature)

Collinear, non-degenerate: Transversal wavevectors of bi-photons, correlated

Non-Linear

Crystal

Photon

pair

405 nm

pump

SPDC Laboratory Setup

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

Effects of DCR and Crosstalk – Source OFF

- Intensity: just accumulation of hits
- G⁽²⁾: linearized index on x and y axis of coincidences

Anticorrelated Bi-photons (T<T_c)

Matching Theory: SPDC Generation vs. Temperature

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

29

SUPER

TWIN .

Outline

- Motivation
- Requirements for imaging with entangled photons
- SuperEllen fabrication and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

Higher Order G^(N): Pseudo-Thermal Light Source

- Setup for thermal near-field imaging
- Rotating ground glass disk produces pseudothermal statistics

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

G⁽²⁾ Measurement with Pseudothermal Light

SUPER TWIN

32

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

G⁽³⁾ Measurement with Pseudothermal Light

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Improvement Without Processing

Thermal G⁽²⁾

Thermal G⁽³⁾

Thermal G⁽⁴⁾

G^(N) (ρ, ... ρ) diagonal terms

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

Applying Reconstruction Algorithm

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

28/02/2018

Outline

- Motivation
- Requirements for imaging with entangled photons
- SuperEllen fabrication and characterization
- G⁽²⁾ correlations in SPDC with bi-photons
- G⁽²⁾-G⁽⁴⁾ in thermal imaging
- Conclusions & future outlook

Conclusions & Outlook

- Superresolution concept addressed by entangled photon detection
- Efficient detection of simultaneously impinging photons needs
 - TDC-based architecture
 - Thresholding mechanism
 - Efficient readout

32x32 SPAD array demonstrator with per-pixel TDC and row/frame skipping

- 200ps timing resolution
- 20% fill-factor
- 800 kfps max
- Advantages are demonstrated in G⁽²⁾ measurements of entangled photon pairs and G⁽²⁾-G⁽⁴⁾ measurements with quasi-thermal light.
- Future step: 256x256 detector for G⁽⁵⁾ measurements

37

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH

SUPERTWIN

All Solid-State Super-Twinning Photon Microscope

We thankfully acknowledge the support of the European Commission through the SUPERTWIN project, id. 686731.

M. Perenzoni - Imaging with entangled photons - ISSW2018, Les Diablerets, CH