SiPM and SPAD Arrays for Next Generation LiDAR

Salvatore Gncechi, PhD
Senior LiDAR Engineer

International SPAD-Sensor Workshop
SensL Quick Facts

<table>
<thead>
<tr>
<th>Business</th>
<th>Low Light Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Markets</td>
<td>Medical Imaging</td>
</tr>
<tr>
<td></td>
<td>Radiation Detection</td>
</tr>
<tr>
<td></td>
<td>Automotive</td>
</tr>
<tr>
<td></td>
<td>LiDAR</td>
</tr>
<tr>
<td>Model</td>
<td>Fabless Semiconductor</td>
</tr>
</tbody>
</table>

- Established 2004
- ISO9001:2008 Certified
LiDAR Product & Demonstrator Roadmap

Products

- **RA-Series SiPM**
- **1x16 SiPM Array**
- **3D ToF SPAD Array**

Demonstration Platforms

- **Gen 1 – Single Point**
 - 30m indoors
 - February 2016

- **Gen 2 – Single Point**
 - 100m outdoors
 - Low reflective targets
 - September 2016

- **Gen 3 – 3D ToF Imaging**
 - 100m+ outdoors
 - Low reflective targets
 - June 2017
Agenda

- Anatomy of a LiDAR system
 - Tx: eye safe laser beam
 - Rx: high sensitivity SiPM/SPAD sensors
- Challenges for long distance outdoor LiDAR systems
- Current LiDAR systems solutions based on SiPM sensors
- Future LiDAR sensors based on SiPM/SPAD array sensors
- SensL Gen3 demonstrator
Anatomy of a LiDAR System

Point Cloud Image
100s Megabit / s

Tx
- Transmission Lens
- Laser Diode
- Laser Driver
- Timer (TDC)

Rx
- Receiver Lens
- SiPM/SPAD
- Amplification
- Comparator / ADC

Memory
Micro controller
Image Processor
Start
Stop

Timer (TDC)
Direct ToF LiDAR Measurement Techniques

- **Single shot**: one laser pulse per measurement (SiPM)
 - A single returned pulse is time stamped and the range determined
 - High optical SNR required

- **Multishot**: multiple laser pulses per measurement (SiPM or SPAD)
 - Laser pulses are time stamped & histogrammed
 - Range is determined from the histogram data
 - Increases SNR extending range
Challenges for Long-distance LiDAR Systems

- **Tx: Laser diodes / Scanning method**
 - High and eye safe laser peak power required for long distance
 - High repetition rate for high frame rate systems
 - Short laser pulses for power optimization
 - Wavelength drift over temperature
 - Allows for narrower bandpass filters to be used and improve ambient rejection
 - Solid-state scanning methods
 - MEMS
 - OPA

- **Rx: SiPM/SPAD**
 - High responsivity at 905 nm and 940 nm for long range
 - High dynamic range for ambient light rejection
 - Compact size – cost effective
 - High pixelization
 - For high angular resolution
 - For best SNR performance
 - High data rate
 - Fast read out
Anatomy of a LiDAR System

Point Cloud Image 100s Megabits / s

Memory

Micro controller

Image Processor

Timer (TDC)

Laser Diode

Laser Driver

Transmission Lens

Receiver Lens

SiPM/SPAD

Amplification

Comparator / ADC

Start

Stop

100s Megabits / s
Laser Eye Safety and LiDAR Systems

- Long range LiDAR requires high peak power lasers
- Laser power is spread over a wide angle of view (AoV)
- Aperture of the human eye has a limited AoV
- Important factors to meet eye safety limits from IEC 68025
 - Shorten the laser pulse to reduce energy per pulse
 - Increase the laser aperture for light leaving the LiDAR system
Laser Eye Safety

Maximum Permissible Exposure (MPE) IEC 68025-1 (2014)

\[AoV_x = 0.1^\circ, \text{ assumes viewer is 10 cm (4'') from laser aperture} \]

Key to laser eye safety
- Short laser pulses
- Large laser aperture

Increasing optics aperture
Decreasing pulse width

Maximum scanning system laser power at 905 nm
Anatomy of a LiDAR System

Point Cloud Image 100s Megabits / s

Tx
- Transmission Lens
- Laser Diode
- Laser Driver
- Image Processor
- Timer (TDC)
- Memory

Rx
- Receiver Lens
- SiPM/SPAD
- Amplification
- Comparator / ADC
- Microcontroller
- Memory
- Image Processor

Start
Stop
Nomenclature: SPAD and SiPM

Single microcell/SPAD
- Cathode
- SPAD
- Anode
- \(V_{bias} \)
- \(R_{quench} \)

Time or count single photons

Example of 12 microcell/SPAD SiPM
- Cathode
- Fast Output
- \(V_{bias} \)
- \(R_{quench} \)
- Quench Resistor

Time or count multiple photons
LiDAR Sensor Technology Evolution

Yesterday

Single Point LiDAR

Electromechanical Imaging LiDAR

Solid-State Imaging LiDAR V1

Today

SiPM (C-Series)

SiPM (R-Series)

SiPM Array (R-Series)

SPAD Imager

Tomorrow

Digital

High gain

Low gain

APD

PIN

Solid-State Imaging LiDAR V2
Long-distance LiDAR Systems Evolution

- **Today:** Electromechanical scanning TX \ RX (coaxial)
 - Single point (2D scan)
 - Single SiPM
 - Vertical/Horizontal line (1D Scan)
 - SiPM array

- **Future:** Solid-state scanning TX \ Staring RX
 - Single point (2D scan)
 - MEMS mirrors for TX
 - SiPM/SPAD array for RX
 - Vertical/Horizontal line (1D Scan)
 - MEMS mirrors/array for TX
 - SiPM/SPAD array for RX
LiDAR Design with SiPM
Practical Solutions for Today's LiDAR Modules

- Beam Steering
 - 1D or 2D
 - Electromechanical or MEMS

- Laser Diode
 - High peak power (1000s W)
 - 905 nm commercially available
 - 940 nm solar minimum advantage
 - High pulse rep. rate (100s kHz)
 - Short pulse width (1ns or less)

- Optics
 - Small AoV per pixel
 - Optical bandpass filter (10 to 50 nm)
 - Driven by laser technology
 - Small aperture size
 - For optimal SNR and system size

- SiPM Sensor or SiPM Array
 - High responsivity @ 905 & 940 nm (100kA/W+)
 - High dynamic range
 - Highly uniform (+- 10% output)
 - Low voltage (<50V)
How to Range >200m With SiPM Technology

- **Ranging Solution**
 - 40° x 30° Long range
 - 120° x 30° Short range

- **Sensor Specification**
 - 1x16 SiPM
 - R-Series

- **Resolution**
 - AoVx = 0.1°
 - AoVy = 1.9°

- **Laser Specification**
 - 905 nm or 940 nm
 - 1ns laser pulse
 - 500 kHz repetition rate
 - Maintains eye-safety for both systems
Challenges with Today’s LiDAR Systems?

1. Poor angular resolution in the y-direction
2. Steering the received light onto the sensor
Future LiDAR Design with SPAD or SiPM Arrays

- Beam Steering
 - TX scanner
 - MEMS, optical phase array, other
 - Ultra compact LiDAR solution
 - No RX beam steering required
- Laser Diode
 - High peak power (1000s W)
 - High pulse rep. rate (100s kHz)
 - Short pulse width (1ns or less)
- Optics
 - TX can be miniaturized
 - RX optimized for SPAD or SiPM array
 - Small AoV per pixel

Target

Laser Diode

Beam Steering

Optics

Staring Rx

LiDAR Module

Filter

Optics

SiPM array

Pandion: SPAD array

or
SensL Pandion SPAD Array for Next Generation LiDAR System

- 400×100 SPAD array
- High dynamic range
- High raw data output rate
- Optimised for vertical line scanning

- 0.1° x-y angular resolution
- Suitable for >100m ranging at 10% reflectivity in full sunlight

Pandion pixels

Sampling Q2 2019
Gen 3 Imaging LiDAR Demonstrator
Anatomy of the Gen 3 Imaging LiDAR System

Specifications Summary

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AoV</td>
<td>80° x 5.53°</td>
</tr>
<tr>
<td>Pixel AoVx</td>
<td>0.1°</td>
</tr>
<tr>
<td>Pixel AoVy</td>
<td>0.325°</td>
</tr>
<tr>
<td>Aperture Rx</td>
<td>22 mm</td>
</tr>
<tr>
<td>Image Size</td>
<td>800 x 16 pixels</td>
</tr>
<tr>
<td>Data Rate</td>
<td>6 Mbits / s</td>
</tr>
<tr>
<td>Num. Laser Diodes</td>
<td>16</td>
</tr>
<tr>
<td>Pulse Width</td>
<td>1 ns</td>
</tr>
<tr>
<td>System Peak Power</td>
<td>400 W (Internal)</td>
</tr>
<tr>
<td>System Size</td>
<td>22cm x 18cm x 13cm</td>
</tr>
</tbody>
</table>
3D ToF Imaging LiDAR with SiPM
Gen3 Demonstration Video

- Demo Objectives:
 - Demonstrate SiPM advantages
 - Long distance low reflective target ranging
 - Imaging

- 1x16 SiPM Array
 - Monolithic SiPM array
 - Compact Rx

- System overview
 - 80° x 5° AoV
 - 16 channels acquired simultaneously
 - Imaging and depth displayed simultaneously

Full Video Link
https://www.youtube.com/watch?v=Lg2L7v5vb7M
Thank You

More information can be found at www.sensl.com
Contact us at sales@sensl.com