

NUV-HD and NIR-HD SiPMs and Applications

Alberto Gola gola@fbk.eu

Fondazione Bruno Kessler

Detector-grade clean-room, 6 inches, class 10 and 100

Publicly funded research center

350 researches working in different fields Silicon Photomultipliers account for a significant portion of the detectors fabricated here.

February 26, 2018

- NUV-HD SiPM technology
- SPTR of NUV SiPMs
- Cryogenic applications of NUV-HD
- VUV-HD SiPM technology
- NIR-HD SiPM technology

FBK SiPM technology roadmap

February 26, 2018 Alberto Gola - FBK custom SiPM technologies - ISSW2018

BRUNO KESSI E

Near-UV technology NUV-HD

Near-UV technology: NUV-HD

< 2 µm

- p-on-n junction → higher Pt for UV light
- Narrow dead border region → Higher Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk
- Make it simple: 9 lithographic steps

Signal: Photon Detection Efficiency

NUV-HD: QE

Measured on a photodiode with same layers as SiPM

NUV-HD: QE*Pt

Fast increase with over-voltage: \rightarrow avalanche is initiated by electrons

Measured on a SPAD with 100% FF

SPAD size is defined by metal opening which is within the high-field region

Slower increase with over-voltage: \rightarrow avalanche is initiated by holes (and electrons)

SPAD Pitch	15 µm	20 µm	25 µm	30 µm	35 µm	40 µm
Fill Factor (%)	55	66	73	77	81	83
SPAD/mm ²	4444	2500	1600	1111	816	625
High Dynamic Range, Low correlated noise High PDE						
-ebruary 26, 2018 Alberto Gola - FBK custom SiPM technologies - ISSW2018						

Single Photon Time Resolution

Photon detection efficiency

Gola, A et al. (2019). "NUV-Sensitive Silicon Photomultiplier Technologies Developed at Fondazione Bruno Kessler." *Sensors*, *19*(2), 308.

Dark Count Rate and Direct Crosstalk

Dark Count Rate

Optical Crosstalk (Correlated Noise)

NUV-HD-LowCT

Applications such as CTA

Light absorbing material was inserted inside trenches, between adjacent microcells

SEM image of trenches, separating adjacent microcells.

2.5x reduction of Optical Crosstalk at same PDE

Single Photon Timing Resolution

Acerbi, F. et al. (2015). "Analysis of single-photon time resolution of FBK silicon photomultipliers." NIMA, 787, 34-37.

NUV SiPM – SPTR

Larger active are \rightarrow larger SiPM capacitance \rightarrow more LP filtering \rightarrow smaller signal

Bigger effect of the electronic noise on SPTR

February 26, 2018

Cryogenic Applications of SiPMs

There is a growing interest in using SiPMs for the readout of liquid scintillators at cryogenic temperatures.

February 26, 2018

Devices Under Test

Parameters (@ room T)	NUV-HD Std. field	NUV-HD Low-field	
Cell Size	25 µm	25 µm	
Fill Factor	73%	73%	
Breakdown Voltage	26.5 V	32 V	
Max PDE	50%	50%	
Peak PDE λ	410 nm	410 nm	
DCR (20°C)	< 150 kHz/mm ²	< 150 kHz/mm ²	
DiCT	25%	25%	
DeCT + AP	2%	2%	

SiPM characteristics tested form 300 K to 40 K

Optimized for low temperature operation

February 26, 2018

Breakdown Voltage vs. Temperature

The mean free path of the carriers in the high-field region increases with decreasing temperature.

February 26, 2018

Alberto Gola - FBK custom SiPM technologies - ISSW2018

NUV-HD – Cryogenic DCR Measurements

Standard field

February 26, 2018

NUV-HD-Cryo – reduction of afterpulsing

New NUV-HD-Cryo SiPM technology allows suppression of afterpulsing at cryogenic temperatures, allowing a much increased operating overvoltage

Photon counting at 77 K

Designed at LNGS

- 4 transimpedance amplifier: each TIA reads 6cm²
- Hybrid configuration for SiPMs: 4x2s3p

Vbias

• Further cold amplification before transmission outside

NUV-HD technology for VUV

VUV-HD

We are modifying the NUV-HD to enhance efficiency in the VUV.

Light attenuation length in Si

At 850nm \rightarrow the silicon absorption depth is about 18µm.

 \rightarrow important to extend the collection depth (with respect to std. SiPMs)

33

February 26, 2018

Design: thicker epitaxial layer

We use a thick epitaxial layer

- Theoretical QE at 850 nm: about 35%
- Trench depth increased to: > 8µm

Other factors affect PDE:

- Triggering probability (Pt) increase with over-voltage
- Effective geometric fill-factor (FF)

- n-on-p junction \rightarrow higher Pt for NIR light (absorbed at high depth)
- Based on epitaxial layer: sensitive layer
- Narrow dead border region \rightarrow Higher Fill Factor
- Trenches between cells \rightarrow Lower Cross-Talk
- Make it simple: 9 lithographic steps

NIR-HD – I-V curve and Breakdown voltage

Breakdown Voltage

Thin vs. thick epitaxial layer

Breakdown voltage is the same of thin-epi (~28V @20°C)

BD Temperature dependence

Small Vbd temperature dependence even with thick epitaxial layer

Approx. 28 mV/°C

Acerbi, F. et al (2018). Silicon photomultipliers and single-photon avalanche diodes with enhanced NIR detection efficiency at FBK. *NIMA*, *912*, 309-314.

February 26, 2018

PDE without border effects: masked SPAD RRUNO KESSI FR

Masked SPAD PDE

Without border effect, thicker epitaxial layer provides a significant increase of PDE at long wavelengths

NIR-HD run @ FBK

End of 2017

Functional characterization

February 26, 2018

PDE vs. Over-voltage at 850 nm

PDE vs. Over-voltage at 905 nm

Direct Crosstalk vs. PDE

Thank you!

Thanks also to all the members of the team working on custom SiPM technology at FBK:

Fabio Acerbi Massimo Capasso Gabriele Faes Nicola Furlan Marco Marcante Alberto Mazzi Stefano Merzi Claudio Piemonte Veronica Regazzoni Nicola Zorzi