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Outline 

§ CMOS SPAD – motivation 
§ Two ended vs. Single Ended SPAD (bulk 

isolated) 
§ P+/N two ended SPAD and its optimization 
§ Application of P+/N two ended SPAD  
§ NIR enhanced N+/P SPAD scheme 
§ QE optimization device and optics 
§ SiPM and its density optimization 
§ Source Follower as an amplifier 



Single Photon Detection 

§ OOPs – the wrong presentation, this is 4T pinned 
photo diode pixel – 1e noise, very high sensitivity 

§ So, why SPAD – People say, it’s all about timing … 
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Images at starry night – 0.6 mili-Lux!!!!  
(10 micron pixels) 

5 meters   10 meters   15 meters 



CMOS – SPAD, SPAD in CMOS/CIS Process 

§ Stand alone SPAD can be well optimized 
–  using minimal mask count 
–  any desirable operating voltage 
– High performance 

§ SPAD embedded in CMOS/CIS process 
– Somewhat inferior for the features above, 

However: 
– Allows monolithic on chip quenching, readout, 

and other circuitry 
– Enable CIS optimized pixel on same chip with 

SPADs   
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Single Ended SPAD (bulk Isolation) vs. Two Ended 

§ Can one add low voltage circuitry in series to the 
SPAD? 

§ Single Ended SPAD can have better NIR 
response but it’s harder to use fancy quenching  
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Yes Problematic 

Single Ended SPAD “Two Ended”  SPAD 



P+/N “Two Ended” SPAD optimization 

Schematic cross 
section of the SPAD 

Simulated Doping Concentration 
on a vertical cut line 
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TCAD Process Simulation Results- 

Simulated half SPAD structure 
(Doping Concentration) 

Simulated SPAD IV curve 

P-SPAD 
N-SPAD Virtual 

Guard 
ring 

Deep Nwell 

N-well 
BV~-19V BV~-13.9 BV~-12V 
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§ Avoiding Early Edge Breakdown by Virtual Guard 
ring 



Electrical Fields and Impact Ionization Rate  

No Edge BV 

Simulated electrical fields at -14V on the Anode 
(process A) 
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Simulated Impact Ionization rate on the vertical 
cut line (A, -24V, B, -18V, C, -14V on the Anode) 

Simulated electrical fields on the vertical cut 
line (A, -24V, B, -18V, C, -14V on the Anode) 

Simulated Impact Ionization rate at -14V on the 
Anode (process A) 



DCR vs. Excess Bias  (room temperature) 

Process	
split	 BV	[V]	 DCR	Density	[Hz/um2],	RT	
A	 -12.41	 21	
B	 -14.54	 4.6	
C	 -20.13	 1.5	

Measured DCR density vs. Excess bias at room 
temperature 

At 3.3V excess bias:  9	

§ DCR is exponential in 
excess voltage 

§ Inversely depends  
on breakdown 
voltage 



Photon Detection Efficiency Spectrum and 
Excess Bias dependency 

Process	
split	 BV	[V]	 PDE	[%]	Blue	470nm	

PDE	[%]	Green	
530nm	

PDE	[%]	Red	
660nm	

PDE	[%]	NIR	
880nm	

A	 -12.41	 20.93	 15.93	 7.3	 2.03	
B	 -14.54	 16.13	 12.69	 6.63	 1.55	
C	 -20.13	 12.07	 9.09	 6.91	 1.33	

Measured PDE vs. Excess bias (passive quenching circuit)  
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§ PDE linearly dependant on 
excess voltage 

§ Low PDE for NIR  



P+/N  SPAD Application – Gunshot Detection 
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•  Application works in visible light  
•   2nd Generation can be monolithic 

since TowerJazz can join CIS 
pinned photodiode and SPAD 
within the same process  



Device and Pixel Architecture 
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64x64 SPAD Imager Layout 

SPAD pixel Layout 

SPAD pixel Block Diagram 



N+/P Single Ended SPAD 

Schematic cross section of the SPAD and 
isolation P-wells 

SPAD SIMS Vertical 
Profiles 
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§ Implemented on 5.5µm epi – 30Ωcm 
§ Note bulk to epi doping gradient 



TCAD Process Simulations Results- 

Simulated half SPAD structure 
(Doping Concentration) 

N-SPAD 
P-SPAD P-well + 

Deep P-well 

Depletion Layers 

Metallurgical Junction 

Cut Line 
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No Edge Breakdown 

Simulated electrical fields at 21V on 
the Cathode 

§ Low fields on diode edge – avoiding edge breakdown 



Electrical Fields (magnitude)- simulated- 

Simulated electrical fields and potential on the 
vertical cut line (21V on the Cathode) 
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Measurement system 
leakage 

B
V 

Simulated and Measured SPAD IV 
curve 

§ Electrical field is small 
out of multiplication 
region 

§ Good agreement of IV 
curve between 
simulations and 
measurements 



Measured Performance parameters 

§ PDE at 905nm 3.2%  
averaged on cell pitch 

§ Low DCR 
§ Acceptable DCR even 

for 100C! 
Meas. by Niclass  2015 
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Normalized  Photon Detection 
Efficiency at 5V Excess Bias  

 
Measured mean DCR density vs. 
temperature at 5V Excess Bias  
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Measured Performance parameters  (Cont.) 

§ DCR is weakly dependant on excess voltage 
§ Jitter is small and suitable to automotive 

demands 
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timing response @ 5V Excess Bias to a 
635nm laser diode emitting 100 psec overall 
timing jitter of ~160 psec FWHM. 
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Excess Bias  [V] 

 
Measured mean DCR density vs. 
Excess Bias , room temperature 



SPAD with depleted low doped region 

§ Reach-Through SPAD  
§ Quit old concept 
§ From: Opto-Electr Rev. 5 

no. 2 1997 

     

     
 

§          
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Doping Profile 

Cross Section 

Field Profile 



Fully depleted 9µm High Res SPAD Simulations 

§ Similar SPAD structure – starting material and implants 
change 

§ Breakdown -  simulated 36V measured 38V 
§ Significant field deep in the epi -  
§ Average QE at 905nm enhanced from 3.2% to 4.6% 

19	

 
Simulated Potential vs. depth 

 
Simulated Field vs. depth 

 
Edge Optimization 



SiPM – Silicon Photo Multiplier 
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§  Array of SPADs 
§  Hard wired or capacitively 

coupled SPADS 
§   Benefits: 

–  Timing  + number of 
photons 

§  Cons 
–  Slower rise time 
–  Sensitive to 

“screaming”  SPADs 
–  More prone to X-talk 



Optimization of Layout Of an SiPM  

§  Guard Ring is minimized 
§  Rounded corners instead of 

circles 
§  High Resistivity poly 

resistors 10kΩ/ 
§  Fine optimization of cell 

size  
–  Fill Factor 
–  Microlenses 
–  Capacitance 

§  No evidence for screaming 
SPADs nor for cross talk 
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Elevated Microlenses Optics  

§  SPAD suffers from low fill factor 
§  SPAD diodes pitch is relatively large – hard to make effective microlenses 
§  For long focal length lenses should be put high above the B/E 
§  Tower developed large elevated microlenses 
§  With elevated microlenses we expect effective QE of about 7%  
§  Targeting effective QE of 10% at 905nm after further device optimization  
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Transparent Material 

Metal Last  

Microlens 

Normalized  PDE mapping of SPAD  
area, Niclass  2014  Elevated  “Big” Microlenses 



Dead time and Active Quenching 

§ SPAD capacitance is between 10fF-30fF 
depends on layout 

§ RC time with 250kΩ resistor is below 10ns, which 
is probably good enough for Automotive 
applications 

§ We are working on “tricky” quenching circuits that 
can improve by shortening and better defining the 
dead time 
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Capacitive Coupled Monostable Recovery Circuit  
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Summary   

§ CMOS-SPAD was developed on platform 
supporting 0.18um CMOS (1.8V/3.3V or 1.8V/
5.0V) and CIS state of the art pixels 

§ “Single Ended” and “Two Ended” version were 
developed 

§ Optimization was mostly focused on effective 
PDE in the NIR – Layout, Starting Material , 
Implant Scheme, and pixel optics  

§ Some special process modules were developed 
i.e.  super high resistor, large microlenses and 
microlense elevation 
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