The Latest on SPAD Imaging in Japan

- Event Detection and Quick Readout Schemes -

Kunihiro Asada VLSI Design and Education Center University of Tokyo 27th February 2018 ISSW 2018@Les Diablerets

Recent Trend of SPAD Studies in Japan

High Fill Factor & Near Infra-Red

Hamamatsu Photonics/SPIE 2018

- 3D Hybrid SPAD imager with SiPM
- Toyota Central R&D Lab/Sensor 2016

Recent Trend of SPAD Studies in Japan (2)

Recent Trend of SPAD Studies in Japan (3)

- **Basic Study on After-Pulse**
- Toshiba R&D Center/IEEE Trans 2017
 - Overdrive Voltage, Structure, Recovery Time →After-Pulse

Recent Trend of SPAD Studies in Japan (4)

- Quick access to pixels in ROI
- University of Tokyo, VDEC/Sensor 2017
 - Selective quick access to breakdown-pixels
 - Background readout during photon detection
 - Filtering method of noise

Background of our Laboratory

Comparison of 3 access methods

(1) Address Scan N bits

(2) Data Scan
 0 .. N·log₂N bits
 (Priority Encode)
 (This study)

(3) Binary Scan 1.. 2N bits

- L : Mean Code Length
- : # of Branch b
- N : # of Depth
- p_1 : Active Probability of Sensor

Example: Binary/Quarter Scan method

➤Quad-Tree Search

- Sequential priority encoder
- Suitable for spot light detection

Example: Data Scan Method suitable for sheet light detection

Comparison of Speed v.s. Resolution at 2004

Table of Content

1. SPAD structures and characteristics

PAP: Probability of After-Pulse

- 2. Quick readout circuits for short time-window
- 3. High resolution method of scintillation light position

SPAD structures, a typical pixel circuit and characteristics SPAD design for Standard CMOS 0.18 with Deep Nwell

Unsuccessful trials:

- (a) Pdiff/Nwell with STI guard
- (b) Ndiff/Pwell eith STI guard
- (c) Pdiff/Nwell with Pwell guard

SPAD	V _{BR} [V]	DCR [Hz]
(a)	7.9	>2 MHz@ V _{EX} = 0.1V
(b)	8.0	>2 MHz@ V _{EX} = 0.1V
(c)	7.9	>1 MHz@ V _{EX} = 0.1V

(c) Pdiff/Nwell with Pwell guard ring

Dark counts rate is very large due to the low breakdown voltage (mainly tunneling)

<u>SPAD structures, a typical pixel circuit and characteristics</u> Final tolerable SPAD structure for Standard CMOS

<u>SPAD structures, a typical pixel circuit and characteristics</u> SPAD: After-pulse (AP) phenomenon

After pulse: dark counts caused by deep traps in depletion region.

S. Cova et al., IEEE Electron Device Letters, 1991.

<u>SPAD structures, a typical pixel circuit and characteristics</u> After-pulse characterization on hold-off time

The probability of AP can be reduced by hold-off time

SPAD structures, a typical pixel circuit and characteristics Breakdown Pulse interval measurement

- Measure time differences between the falling edge of a pulse and the rising edge of next pulse.
- > Repeat the measurements many times (>100,000).
- > Normalization.

Time interval distribution analysis.

Pulse interval probability for Long hold-off time

- Hold-off time is 1 ms set by the external 'Force_off'
- Free of after-pulsing
- Time interval: Exponential distribution
- 250,000 measurements, bin=100 ns

Measured :

Mean : 95.32 μs Var : 8.986 × 10⁹ ns^2 Std : 94.8 μs Median : 66.36 μs **Exp distribution** $p(t) = \lambda e^{-\lambda t}, \lambda = \frac{1}{\text{Mean}}$ Var : $\frac{1}{\lambda^2} = 9.085 \times 10^9 \, ns^2$ Median : $\frac{\ln(2)}{\lambda} = 66.08 \, \mu s$

<u>SPAD structures, a typical pixel circuit and characteristics</u> Pulse interval probability with short & long hold-off

SPAD structures, a typical pixel circuit and characteristics

Discrepancy for short & long hold-off time \rightarrow After-pulse

SPAD structures, a typical pixel circuit and characteristics

Calculation of After-Pulse probability

For a certain time period ' $\Delta t'$ (=1 us) :

 $P_{BD}(t)$: measured breakdown probability

 $P_{DC}(t)$: measured breakdown probability at long hold-off time

 $P_{AP}(t)$: After-pulsing probability

$$P_{BD}(t) = 1 - (1 - P_{DC}(t))(1 - P_{AP}(t))$$
$$P_{AP}(t) = 1 - \frac{1 - P_{BD}(t)}{1 - P_{DC}(t)}$$

<u>SPAD structures, a typical pixel circuit and characteristics</u> Hold-off time vs. After Pulse Probability

 P_{AP} can be reduced to 1 % @ 20 ns hold-off

Table of Content

- 1. SPAD structures, a typical pixel circuit and characteristics
- 2. <u>Quick readout circuits for short time-window</u>
 ➢ Methods of readout
 ➢ DCR: Dark Current Rate
 ➢ PDP: Photon Detection Probability
- 3. High resolution method of scintillation light position

Quick readout circuits for short time-window

Row-parallel: Breakdown-pixels-extraction (BPE)

- Row parallel scan of breakdown pixels
- Readout cycles: $1+Max(N_{BD,i}) X (4+1)$ for 15 x 15 SPAD array

 N_{BD} : the # of breakdown pixels in the whole chip $N_{BD,i}$: the # of breakdown pixels in the i-th row

<u>Quick readout circuits for short time-window</u> Readout after photon detection (Non-pipeline)

- Typical pulse light (20 ns~100 ns)
- Short window time for low dark counts & high frame rate

Quick readout circuits for short time-window

Photon detection & background readout (Pipeline)

- One more bit memory to each pixel
- Pipelined photon detection & readout
- Minimized dead time
- Drop a frame if readout is longer than window time

Quick readout circuits for short time-window

Readout with event discriminator (pre-screening)

- # of breakdown pixels is counted before readout
- Total counting cycles are proportional to max(N_{BD,i})
- Noise discrimination based on cycle count

<u>Quick readout circuits for short time-window</u> Circuit details: non-pipeline architecture

<u>Quick readout circuits for short time-window</u> Detailed sequence of readout operation

<u>Quick readout circuits for short time-window</u> Circuits details: Pipeline architecture

Quick readout circuits for short time-window

Circuits details: Active quenching circuit for pipeline

<u>Quick readout circuits for short time-window</u> Chip outline: Pre-screening architecture

<u>Quick readout circuits for short time-window</u> Chip micro-photographs (CMOS 0.18um)

Type A: Non-pipeline

Type B: Pipelilne

Type C: Pre-screening

Quick readout circuits for short time-window

Measurement setup: Pulse-laser pinhole imaging

<u>Quick readout circuits for short time-window</u> Integrated Images: Effect of event discrimination

<u>Quick readout circuits for short time-window</u> Measurement of Dark Count Rate (DCR) distribution

Measurement of photon detection probability (PDP)

Photon detection probability (PDP):

Probability that one single incident photon triggers breakdown.

Measurement procedure:

- Put a 25 um pinhole in front of SPAD imager socket.
- Activate a pulsed laser after the global reset.
- Record the first frame after the laser pulse.
- Repeat the measurement 1000 times \rightarrow **Counts**
- Calculate the # of incident photos/pixels $\rightarrow \mathbf{N}$
- Take into account the probability of the dark counts $ightarrow P_{DC}$

$$\frac{\text{Counts}}{1000} = 1 - (1 - PDP)^N (1 - P_{DC})$$
$$PDP = 1 - (\frac{1 - P_{BR}}{1 - P_{DC}})^{\frac{1}{N}}$$

<u>Quick readout circuits for short time-window</u> Pinhole matching for calculating detracted photon map

<u>Quick readout circuits for short time-window</u> PDP distribution calculated from measurement results

- PDP= (Quantum efficiency) x (Breakdown probability)
- Higher over-bias voltage \rightarrow higher PDP
- There are afew
- False pixels with very high PDP

Quick readout circuits for short time-window PDP distribution

Calculated PDP mapping

False pixels with very high PDP;

located at the ring zones of low defracted photons

Quick readout circuits for short time-window

Duty ratio: photon-sensitive-time/total-time

Table of Contents [skip]

SPAD structures, a typical pixel circuit and characteristics
 Quick readout circuits for short time-window

3. <u>Possible application :</u>

High resolution method of scintillation light position

- Simulation study -

High resolution method of scintillation light position

Requirements for Scintillation Detector

Principles of Compton Camera and PET are different. However both need precise estimation for scintillation point (spatial resolution)

Principle for Compton Camera^[4]

Principle for PET^[5]

[4] : [Online] URL: http://pubs.rsc.org/is/content/articlehtml/2008/ja/b802964d

[5] : [Online] URL: https://multimodalneuroimaging.wordpress.com/2015/04/28/c-positron-emission-tomography/

High resolution method of scintillation light position Known methods

Two methods for raising the spatial resolution of scintillation detector

(1) Space resolution : ~ 1mm^[6]

(2) Space resolution : ~ 300um^[7]

Space resolution requirement for medical application $\rightarrow 10 \sim 100$ um

[6] : N. Uhlmann et al., "3D-Posi9on-ænsi9ve Compact Scin9lla9on Detector as Absorber for a Compton-Gamera," *IEEE Trans. Nucl. Sci.*, Vol. 52, No.3, Jun.2005. [7] : T. Matsumoto et al., "Simula9on Study to Op9mize the Number of Photo-ætec9on Faces and Inter-crystal Materials for the X'tal Cube PET Detector," 2012 *IEEE*

Nuclear Science Symposium and Medical Imaging Conference Record (NSS/MIC).

High resolution method of scintillation light position

Our proposal for Scintillation Detector

Scintillation detector of SPAD & scintillator covered by multi-pinholes

Structure of proposed scintillation detector

Structure of SPAD^[8]

X.Yang et al., "A 15×15 single photon avalanche diode sensor featuring breakdown pixels extrac9on architecture for efficient

High resolution method of scintillation light position Principle of Light source position detection

Detection Method

- Calculating area probability of light source for each SPAD (store it in table)
- 2 Calculating the total probability of light source for all the active SPADs

High resolution method of scintillation light position

Step1: Calculating area probability for each SPAD

When a SPAD breakdowns, the area inside scintillator can be divided into 2 parts: ① the light source can exist ② the light source can not exist

High resolution method of scintillation light position

Step2: Calculating the total probability

Position of light source can be estimated based on the breakdown information of SPADs

Pattern diagram of light source estimation method

High resolution method of scintillation light position Simulation parameters

Simulation parameters

① Simulate point light source using Monte Carlo Method at particular position

Estimate light source position based on proposed methodology

③ Evaluate the methodology from the result

No	Parameter Name	Value	
1	Diameter of Pinhole	40 um	
2	Interval between pinholes	100 um	
3	Diameter of SPAD	10 um	
4	Interval between SPADs	40 um	
5	Interval between SPAD array and Pinhole array	500 um	
6	Size of scintillator cube	1 mm	
7	Number of generated photons	20000	
8	SPAD detection efficiency	20%	
9	Error rate of SPAD by dark count	0.2%	
10	Position of simulated light source	(200um, 500um, 700um)	

High resolution method of scintillation light position Simulation Results (1)

High resolution method of scintillation light position Simulation Results (2)

High resolution method of scintillation light position

Spacial resolution

- 1. This research proposed a novel type of scintillation detector and use photon reverse ray tracing method
- 2. Proposed scintillation detector has a spatial resolution than prior arts

Reference	[6]	[9]	[10]	Proposed
Type of Scintillation Detector	Conventional scintillation detector	PET Crystal Cube	Si/CdTe Compton Camera	Scintillator cube with pinholes
Type of Sensors	PSBPMTs	MPPCs	Double-sided Si strip detectors (DSSDs)	SPADs
Spatial resolution	1mm	300um	250um - 500um	10 - 20 um

^[9] Y. Yazaki *et al.*, "Development of the X'tal Cube: A 3D Posi9on-Sensi9ve Radia9on Detector With All-Surface MPPC Readout," *IEEE Trans. Nucl. Sci.*, Vol.59, No.2, Apr. 2012.

^[10] S.Watanabe *et al.*, "High Energy Resolu9on Hard X-Ray and Gamma-Ray Imagers Using CdTe Diode Devices," *IEEE Trans. Nucl. Sci.*, Vol.56, No.3, Jun. 2009.

Conclusions & Co-workers

- >A quick readout method of 100-200ns/frame SPAD was demonstrated
- Characteristics of standard 0.18um CMOS SPAD imagers was reported
- A concept of single event fast SPAD imager was proposed
- A possible application of SPAD imagers for scintillation with pin-hole matrix was presented

□Xiao Yang (PhD student)

- 🗖 Kai Xu (Master student)
- Hongbo Zhu (Assistant professor/Sony)
- □ Toru Nakura (Associate professor)
- Tetsuya lizuka (Associate professor)

Than you